Do you want to publish a course? Click here

NIHAO-UHD: The properties of MW-like stellar disks in high resolution cosmological simulations

101   0   0.0 ( 0 )
 Added by Tobias Buck
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulating thin and extended galactic disks has long been a challenge in computational astrophysics. We introduce the NIHAO-UHD suite of cosmological hydrodynamical simulations of Milky Way mass galaxies and study stellar disk properties such as stellar mass, size and rotation velocity which agree well with observations of the Milky Way and local galaxies. In particular, the simulations reproduce the age-velocity dispersion relation and a multi-component stellar disk as observed for the Milky Way. Half of our galaxies show a double exponential vertical profile, while the others are well described by a single exponential model which we link to the disk merger history. In all cases, mono-age populations follow a single exponential whose scale height varies monotonically with stellar age and radius. The scale length decreases with stellar age while the scale height increases. The general structure of the stellar disks is already set at time of birth as a result of the inside-out and upside-down formation. Subsequent evolution modifies this structure by increasing both the scale length and height of all mono-age populations. Thus, our results put tight constraints on how much dynamical memory stellar disks can retain over cosmological timescales. Our simulations demonstrate that it is possible to form thin galactic disks in cosmological simulations provided there are no significant stellar mergers at low redshifts. Most of the stellar mass is formed in-situ with only a few percent ($lesssim5%$) brought in by merging satellites at early times. Redshift zero snapshots and halo catalogues are publicly available.



rate research

Read More

The kinematics of the most metal-poor stars provide a window into the early formation and accretion history of the Milky Way. Here, we use 5~high-resolution cosmological zoom-in simulations ($sim~5times10^6$ star particles) of Milky Way-like galaxies taken from the NIHAO-UHD project, to investigate the origin of low-metallicity stars ([Fe/H]$leq-2.5$). The simulations show a prominent population of low-metallicity stars confined to the disk plane, as recently discovered in the Milky Way. The ubiquity of this finding suggests that the Milky Way is not unique in this respect. Independently of the accretion history, we find that $gtrsim~90$ per cent of the retrograde stars in this population are brought in during the initial build-up of the galaxies during the first few Gyrs after the Big Bang. Our results therefore highlight the great potential of the retrograde population as a tracer of the early build-up of the Milky Way. The prograde planar population, on the other hand, is accreted during the later assembly phase and samples the full galactic accretion history. In case of a quiet accretion history, this prograde population is mainly brought in during the first half of cosmic evolution ($tlesssim7$~Gyr), while, in the case of an on-going active accretion history, later mergers on prograde orbits are also able to contribute to this population. Finally, we note that the Milky Way shows a rather large population of eccentric, very metal-poor planar stars. This is a feature not seen in most of our simulations, with the exception of one simulation with an exceptionally active early building phase.
We analyse from an observational perspective the formation history and kinematics of a Milky Way-like galaxy from a high-resolution zoom-in cosmological simulation that we compare to those of our Galaxy as seen by Gaia DR2 to better understand the origin and evolution of the Galactic thin and thick discs. The cosmological simulation was carried out with the GADGET-3 TreePM+SPH code using the MUlti Phase Particle Integrator (MUPPI) model. We disentangle the complex overlapping of stellar generations that rises from the top-down and inside-out formation of the galactic disc. We investigate cosmological signatures in the phase-space of mono-age populations and highlight features stemming from past and recent dynamical perturbations. In the simulation, we identify a satellite with a stellar mass of $1.2 times 10^9$ M$_odot$, i.e. stellar mass ratio $Delta sim 5.5$ per cent at the time, accreted at $z sim 1.6$, which resembles the major merger Gaia-Sausage-Enceladus that produced the Galactic thick disc, i.e. $Delta sim 6$ per cent. We found at $z sim 0.5-0.4$ two merging satellites with a stellar mass of $8.8 times 10^8$ M$_odot$ and $5.1 times 10^8$ M$_odot$ that are associated to a strong starburst in the Star Formation History, which appears fairly similar to that recently found in the Solar Neighbourhood. Our findings highlight that detailed studies of coeval stellar populations kinematics, which are made available by current and future Gaia data releases and in synergy with simulations, are fundamental to unravel the formation and evolution of the Milky Way discs.
96 - Aura Obreja 2018
We use 25 simulated galaxies from the NIHAO project to define and characterize a variety of kinematic stellar structures: thin and thick discs, large scale single discs, classical and pseudo bulges, spheroids, inner discs, and stellar haloes. These structures have masses, spins, shapes and rotational support in good agreement with theoretical expectations and observational data. Above a dark matter halo mass of $2.5times10^{rm~11}M_{rmodot}$, all galaxies have a classical bulge and 70% have a thin and thick disc. The kinematic (thin) discs follow a power-law relation between angular momentum and stellar mass $J_{rm *}=3.4M_{rm *}^{rm1.26pm0.06}$, in very good agreement with the prediction based on the empirical stellar-to-halo mass relation in the same mass range, and show a strong correlation between maximum `observed rotation velocity and dark matter halo circular velocity $v_{rm c}=6.4v_{rm max}^{0.64pm0.04}$. Tracing back in time these structures progenitors, we find all to lose a fraction $1-f_j$ of their maximum angular momentum. Thin discs are significantly better at retaining their high-redshift spins ($f_jsim0.70$) than thick ones ($f_jsim0.40$). Stellar haloes have their progenitor baryons assembled the latest ($z_{rm~1/2}sim1.1$) and over the longest timescales ($tausim6.2$~Gyr), and have the smallest fraction of stars born in-situ ($f_{rm in-situ}=0.35pm0.14$). All other structures have $1.5lesssim z_{rm1/2}lesssim3$, $tau=4pm2$~Gyr and $f_{rm in-situ}gtrsim0.9$.
The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently-proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early Universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark-matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H$_2$, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities -- which constitute approximately 1% of the Universe -- is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level ($Z approx 10^{-3},Z_{odot}$) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of dark matter halos to cool to the CMB temperature and become Jeans-unstable. Follow-up simulations that include both streaming velocities and metal enrichment by Population III supernovae are needed to understand if streaming velocities provide one path for the formation of globular clusters in the early Universe.
We explored the role of X-ray binaries composed by a black hole and a massive stellar companion (BHXs) as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects low metal-poor stars ($Z = [0,10^{-4}]$) as possible progenitors. The model that better reproduces observations assumes that a $sim 20%$ fraction of low-metallicity black holes are in binary systems which produce BHXs. These sources are estimated to deposit $sim 10^{52}$ erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents $sim 30%$ of the total energy released by SNII and BHX events at redshift $zsim7$ and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than $sim 10^{10} ,M_{odot}$ (or $T_{rm vir} lesssim 10^5 $ K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range $10^7 - 10^8$ M$_odot$. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا