Do you want to publish a course? Click here

Self-Stress on a Dielectric Ball and Casimir-Polder Forces

343   0   0.0 ( 0 )
 Added by Kimball A. Milton
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has always been conventionally understood that, in the dilute limit, the Casimir energy of interaction between bodies or the Casimir self-energy of a dielectric body could be identified with the sum of the van der Waals or Casimir-Polder energies of the constituents of the bodies. Recently, this proposition for self-energies has been challenged by Avni and Leonhardt [Ann. Phys. {bf 395}, 326 (2018)], who find that the energy or self-stress of a homogeneous dielectric ball with permittivity $varepsilon$ begins with a term of order $varepsilon-1$. Here we demonstrate that this cannot be correct. The only possible origin of a term linear in $varepsilon-1$ lies in the bulk energy, that energy which would be present if either the material of the body, or of its surroundings, filled all space. Since Avni and Leonhardt correctly subtract the bulk terms, the linear term they find likely arises from their omission of an integral over the transverse stress tensor.



rate research

Read More

87 - Ulf Leonhardt 2019
In our paper [Ann. Phys. (NY) 395, 326 (2018)] we calculate the Casimir stress on a sphere immersed in a homogeneous background, assuming dispersionless dielectrics. Our results appear to challenge the conventional picture of Casimir forces. The paper [arXiv:1909.05721] criticises our approach without offering an alternative. In particular, the paper [arXiv:1909.05721] claims that we have made an unjustified mathematical step. This brief comment clarifies the matter.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capassos group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be surveyed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder.
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional, velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalised Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atom and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface plasmon frequency.
104 - Yael Avni , Ulf Leonhardt 2017
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties embedded in arbitrary homogeneous backgrounds, assuming only that both materials are isotropic and dispersionless. Our results agree with known special cases; most notably we reproduce the prediction of Boyer and Schwinger et al. of a repulsive Casimir force of a perfectly reflecting shell. Our results disagree with the literature in the dilute limit. We argue that Casimir forces can not be regarded as due to pair-wise Casimir-Polder interactions, but rather due to reflections of virtual electromagnetic waves.
Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the possibility of technological application. The general subject has a long history, going back to the self-repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a perfect magnetic conductor. Recently it has been observed that repulsion can be achieved between ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic polarizable atom can be repelled near an aperture in a conducting plate. Here we provide new examples of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit repulsion. The general systematics of repulsion are becoming clear.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا