Do you want to publish a course? Click here

Multi-Agent Control Using Coverage Over Time-Varying Domains

114   0   0.0 ( 0 )
 Added by Xiaotian Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multi-agent coverage control is used as a mechanism to influence the behavior of a group of robots by introducing time-varying domain. The coverage optimization problem is modified to adopt time-varying domains, and the proposed control law possesses an exponential convergence characteristic. Cumbrous control for many robots is simplified by deploying distribution and behavior of the robot team as a whole. In the proposed approach, the inputs to the multi-agent system, i.e., time-varying density and time-varying domain, are agnostic to the size of the system. Analytic expressions of surface and line integrals present in the control law are obtained under uniform density. The scalability of the proposed control strategy is explained and verified via numerical simulation. Experiments on real robots are used to test the proposed control law.



rate research

Read More

In this paper, a cooperative Linear Quadratic Regulator (LQR) problem is investigated for multi-input systems, where each input is generated by an agent in a network. The input matrices are different and locally possessed by the corresponding agents respectively, which can be regarded as different ways for agents to control the multi-input system. By embedding a fully distributed information fusion strategy, a novel cooperative LQR-based controller is proposed. Each agent only needs to communicate with its neighbors, rather than sharing information globally in a network. Moreover, only the joint controllability is required, which allows the multi-input system to be uncontrollable for every single agent or even all its neighbors. In particular, only one-time information exchange is necessary at every control step, which significantly reduces the communication consumption. It is proved that the boundedness (convergence) of the controller gains is guaranteed for time-varying (time-invariant) systems. Furthermore, the control performance of the entire system is ensured. Generally, the proposed controller achieves a better trade-off between the control performance and the communication overhead, compared with the existing centralized/decentralized/consensus-based LQR controllers. Finally, the effectiveness of the theoretical results is illustrated by several comparative numerical examples.
We present a method to over-approximate reachable tubes over compact time-intervals, for linear continuous-time, time-varying control systems whose initial states and inputs are subject to compact convex uncertainty. The method uses numerical approximations of transition matrices, is convergent of first order, and assumes the ability to compute with compact convex sets in finite dimension. We also present a variant that applies to the case of zonotopic uncertainties, uses only linear algebraic operations, and yields zonotopic over-approximations. The performance of the latter variant is demonstrated on an example.
205 - Yutao Tang 2020
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distributed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(lambda^k T)$, where $lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(lambda^k)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.
Within a robot autonomy stack, the planner and controller are typically designed separately, and serve different purposes. As such, there is often a diffusion of responsibilities when it comes to ensuring safety for the robot. We propose that a planner and controller should share the same interpretation of safety but apply this knowledge in a different yet complementary way. To achieve this, we use Hamilton-Jacobi (HJ) reachability theory at the planning level to provide the robot planner with the foresight to avoid entering regions with possible inevitable collision. However, this alone does not guarantee safety. In conjunction with this HJ reachability-infused planner, we propose a minimally-interventional multi-agent safety-preserving controller also derived via HJ-reachability theory. The safety controller maintains safety for the robot without unduly impacting planner performance. We demonstrate the benefits of our proposed approach in a multi-agent highway scenario where a robot car is rewarded to navigate through traffic as fast as possible, and we show that our approach provides strong safety assurances yet achieves the highest performance compared to other safety controllers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا