Do you want to publish a course? Click here

Anomalous low-frequency conductivity in easy-plane XXZ spin chains

177   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the easy-plane regime of XXZ spin chains, spin transport is ballistic, with a Drude weight that has a discontinuous fractal dependence on the value of the anisotropy $Delta = cos pi lambda$ at nonzero temperatures. We show that this structure necessarily implies the divergence of the low-frequency conductivity for generic irrational values of $lambda$. Within the framework of generalized hydrodynamics, we show that in the high-temperature limit the low-frequency conductivity at a generic anisotropy scales as $sigma(omega) sim 1/sqrt{omega}$; anomalous response occurs because quasiparticles undergo Levy flights. For rational values of $lambda$, the divergence is cut off at low frequencies and the corrections to ballistic spin transport are diffusive. We also use our approach to recover that at the isotropic point $Delta=1$, spin transport is superdiffusive with $sigma(omega) sim omega^{-1/3}$. We support our results with extensive numerical studies using matrix-product operator methods.



rate research

Read More

We reveal a continuous dynamical heating transition between a prethermal and an infinite-temperature stage in a clean, chaotic periodically driven classical spin chain. The transition time is a steep exponential function of the drive frequency, showing that the exponentially long-lived prethermal plateau, originally observed in quantum Floquet systems, survives the classical limit. Even though there is no straightforward generalization of Floquets theorem to nonlinear systems, we present strong evidence that the prethermal physics is well described by the inverse-frequency expansion. We relate the stability and robustness of the prethermal plateau to drive-induced synchronization not captured by the expansion. Our results set the pathway to transfer the ideas of Floquet engineering to classical many-body systems, and are directly relevant for photonic crystals and cold atom experiments in the superfluid regime.
In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit.We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization.
This work is devoted to the investigation of nontrivial transport properties in many-body quantum systems. Precisely, we study transport in the steady state of spin-1/2 Heisenberg XXZ chains, driven out of equilibrium by two magnetic baths with fixed, different magnetization. We take grad
Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet {alpha}-Fe2O3 enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency dependent measurements demonstrate that the observed spin pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in {alpha}-Fe2O3/metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet/nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results highlight the potential opportunities offered by the low-frequency acoustic resonant mode in canted easy-plane antiferromagnets for developing next-generation, functional spintronic devices.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable spin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا