Do you want to publish a course? Click here

An accurate perturbative approach to redshift space clustering of biased tracers in modified gravity

83   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the scale-dependent Gaussian Streaming Model (GSM) to produce analytical predictions for the anisotropic redshift-space correlation function for biased tracers in modified gravity models. Employing the Convolution Lagrangian Perturbation Theory (CLPT) re-summation scheme, with a local Lagrangian bias schema provided by the peak-background split formalism, we predict the necessary ingredients that enter the GSM, the real-space halo pairwise velocity and the pairwise velocity dispersion. We further consider effective field theory contributions to the pairwise velocity dispersion in order to model correctly its large scale behavior. We apply our method on two widely-considered modified gravity models, the chameleon-screened f(R) Hu-Sawicki model and the nDGP Vainshtein model and compare our predictions against state-of-the-art N-body simulations for these models. We demonstrate that the GSM approach to predict the monopole and the quadrupole of the redshift-space correlation function for halos, gives very good agreement with the simulation data, for a wide range of screening mechanisms, levels of screening and halo masses at z=0.5 and z=1. Our work shows the applicability of the GSM, for cosmologies beyond GR, demonstrating that it can serve as a powerful predictive tool for the next stage of cosmological surveys like DESI, Euclid, LSST and WFIRST.



rate research

Read More

Modified gravity and massive neutrino cosmologies are two of the most interesting scenarios that have been recently explored to account for possible observational deviations from the concordance $Lambda$-cold dark matter ($Lambda$CDM) model. In this context, we investigated the large-scale structure of the Universe by exploiting the dustp simulations that implement, simultaneously, the effects of $f(R)$ gravity and massive neutrinos. To study the possibility of breaking the degeneracy between these two effects, we analysed the redshift-space distortions in the clustering of dark matter haloes at different redshifts. Specifically, we focused on the monopole and quadrupole of the two-point correlation function, both in real and redshift space. The deviations with respect to $Lambda$CDM model have been quantified in terms of the linear growth rate parameter. We found that redshift-space distortions provide a powerful probe to discriminate between $Lambda$CDM and modified gravity models, especially at high redshifts ($z gtrsim 1$), even in the presence of massive neutrinos.
We study the effect of the Einstein - de Sitter (EdS) approximation on the one-loop power spectrum of galaxies in redshift space in the Effective Field Theory of Large-Scale Structure. The dark matter density perturbations and velocity divergence are treated with exact time dependence. Splitting the density perturbation into its different temporal evolutions naturally gives rise to an irreducible basis of biases. While, as in the EdS approximation, at each time this basis spans a seven-dimensional space, this space is a slightly different one, and the difference is captured by a single calculable time- and $vec k$-dependent function. We then compute the redshift-space galaxy one-loop power spectrum with the EdS approximation ($P^{text{EdS-approx}}$) and without ($P^{text{Exact}}$). For the monopole we find $P_{text{0}}^{text{Exact}}/P_{text{0}}^{text{EdS-approx}}sim 1.003$ and for the quadrupole $P_{text{2}}^{text{Exact}}/P_{text{2}}^{text{EdS-approx}}sim 1.007$ at $z=0.57$, and sharply increasing at lower redshifts. Finally, we show that a substantial fraction of the effect remains even after allowing the bias coefficients to shift within a physically allowed range. This suggests that the EdS approximation can only fit the data to a level of precision that is roughly comparable to the precision of the next generation of cosmological surveys. Furthermore, we find that implementing the exact time dependence formalism is not demanding and is easily applicable to data. Both of these points motivate a direct study of this effect on the cosmological parameters.
We present the one-loop perturbation theory for the power spectrum of the marked density field of matter and biased tracers in real- and redshift-space. The statistic has been shown to yield impressive constraints on cosmological parameters; to exploit this, we require an accurate and computationally inexpensive theoretical model. Comparison with $N$-body simulations demonstrates that linear theory fails on all scales, but inclusion of one-loop Effective Field Theory terms gives a substantial improvement, with $sim 5%$ accuracy at $z = 1$. The expansion is less convergent in redshift-space (achieving $sim 10%$ accuracy), but there are significant improvements for biased tracers due to the freedom in the bias coefficients. The large-scale theory contains non-negligible contributions from all perturbative orders; we suggest a reorganization of the theory that contains all terms relevant on large-scales, discussing both its explicit form at one-loop and structure at infinite-loop. This motivates a low-$k$ correction term, leading to a model that is sub-percent accurate on large scales, albeit with the inclusion of two (three) free coefficients in real- (redshift-)space. We further consider the effects of massive neutrinos, showing that beyond-EdS corrections to the perturbative kernels are negligible in practice. It remains to see whether the purported gains in cosmological parameters remain valid for biased tracers and can be captured by the theoretical model.
We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and the three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discern between the models. We compare $Lambda$CDM simulations to various modified gravity scenarios and find consistency with previous work in terms of 2-point statistics in real and redshift-space. However using higher order statistics such as the three-point correlation function in redshift space we find significant deviations from $Lambda$CDM hinting that higher order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.
The observed accelerated expansion of the Universe may be explained by dark energy or the breakdown of general relativity (GR) on cosmological scales. When the latter case, a modified gravity scenario, is considered, it is often assumed that the background evolution is the same as the $Lambda$CDM model but the density perturbation evolves differently. In this paper, we investigate more general classes of modified gravity, where both the background and perturbation evolutions are deviated from those in the $Lambda$CDM model. We introduce two phase diagrams, $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams; $H$ is the expansion rate, $fsigma_8$ is a combination of the growth rate of the Universe and the normalization of the density fluctuation which is directly constrained by redshift-space distortions, and $alpha$ is a parameter which characterizes the deviation of gravity from GR and can be probed by gravitational lensing. We consider several specific examples of Horndeskis theory, which is a general scalar-tensor theory, and demonstrate how deviations from the $Lambda$CDM model appears in the $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams. The predicted deviations will be useful for future large-scale structure observations to exclude some of the modified gravity models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا