Do you want to publish a course? Click here

Magnetic anisotropy in single crystal high entropy perovskite oxide La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films

42   0   0.0 ( 0 )
 Added by Thomas Zac Ward PhD
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Local configurational disorder can have a dominating role in the formation of macroscopic functional responses in strongly correlated materials. Here, we use entropy-stabilization synthesis to create single crystal epitaxial ABO3 perovskite thin films with equal atomic concentration of 3d transition metal cations on the B-site sublattice. X-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 (L5BO) films demonstrate excellent crystallinity, smooth film surfaces, and uniform mixing of the 3d transition metal cations throughout the B-site sublattice. The magnetic properties are strongly dependent on substrate-induced lattice anisotropy and suggest the presence of long-range magnetic order in these exceptionally disordered materials. The ability to populate multiple elements onto a single sublattice in complex crystal structures opens new possibilities to design functionality in correlated systems and enable novel fundamental studies seeking to understand how diverse local bonding environments can work to generate macroscopic responses, such as those driven by electron-phonon channels and complex exchange interaction pathways.



rate research

Read More

Magnetic insulators are important materials for a range of next generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between the insulating layer and the conducting layer. However, there are relatively few examples of magnetic insulators which can be synthesized with surface qualities that would allow these smooth interfaces and precisely tuned interfacial magnetic exchange coupling which might be applicable at room temperature. In this work, we demonstrate an example of how the configurational complexity in the magnetic insulator layer can be used to realize these properties. The entropy-assisted synthesis is used to create single crystal (Mg0.2Ni0.2Fe0.2Co0.2Cu0.2)Fe2O4 films on substrates spanning a range of strain states. These films show smooth surfaces, high resistivity, and strong magnetic responses at room temperature. Local and global magnetic measurements further demonstrate how strain can be used to manipulate magnetic texture and anisotropy. These findings provide insight into how precise magnetic responses can be designed using compositionally complex materials that may find application in next generation magnetic devices.
Designing and understanding functional electronic and magnetic properties in perovskite oxides requires controlling and tuning the underlying crystal lattice. Here we report the structure, including oxygen and cation positions, of a single-crystal, entropy stabilized perovskite oxide film of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 grown on SrTiO3 (001). The parent materials range from orthorhombic (LaCrO3, LaMnO3 and LaFeO3) to rhombohedral (LaCoO3 and LaNiO3), and first principles calculations indicate that these structural motifs are nearly degenerate in energy and should be highly distorted site-to-site. Despite this extraordinary local configurational disorder on the B-site sublattice, we find a structure with unexpected macroscopic crystalline homogeneity with a clear orthorhombic unit cell, whose orientation is demonstrated to be controlled by the strain and crystal structure of the substrate for films grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) and NdGaO3 (110). Furthermore, quantification of the atom positions within the unit cell reveal that the orthorhombic distortions are small, close to LaCrO3, which may be driven by a combination of disorder averaging and the average ionic radii. This is the first step towards understanding the rules for designing new crystal motifs and tuning functional properties through controlled configurational complexity.
72 - J. Klein 2002
Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) substrates, we measured the magnetotransport properties both parallel and perpendicular to the substrate and found an anomaly of the electrical transport properties. Whereas metallic behavior is found within the plane of biaxial strain, for transport perpendicular to this plane an insulating behavior and non-linear current-voltage characteristics (IVCs) are observed. The most natural explanation of this anisotropy is a strain induced transition from an orbitally disordered ferromagnetic state to an orbitally ordered state associated with antiferromagnetic stacking of ferromagnetic manganese oxide planes.
High entropy oxides (HEOs) are a class of materials, containing equimolar portions of five or more transition metal and/or rare-earth elements. We report here about the layer-by-layer growth of HEO [(La$_{0.2}$Pr$_{0.2}$Nd$_{0.2}$Sm$_{0.2}$Eu$_{0.2}$)NiO$_3$] thin films on NdGaO$_3$ substrates by pulsed laser deposition. The combined characterizations with in-situ reflection high energy electron diffraction, atomic force microscopy, and X-ray diffraction affirm the single crystalline nature of the film with smooth surface morphology. The desired +3 oxidation of Ni has been confirmed by an element sensitive X-ray absorption spectroscopy measurement. Temperature dependent electrical transport measurements revealed a first order metal-insulator transition with the transition temperature very similar to the undoped NdNiO$_3$. Since both of these systems have a comparable tolerance factor, this work demonstrates that the electronic behaviors of $A$-site disordered perovskite-HEOs are primarily controlled by the average tolerance factor.
Electrical resistivity ($rho$), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd$_{2}$PdSi$_3$, crystallizing in an AlB$_2$-derived hexagonal structure are reported. The well-defined minimum in $rho$ at a temperature above Neel temperature (T$_N$= 21 K) and large negative MR below $sim$ 3T$_N$, reported earlier for the polycrystals, are reproducible even in single crystals. Such features are generally uncharacteristic of Gd alloys. In addition, we also found interesting features in other data, e.g., two-step first-order-like metamagnetic transitions for the magnetic field along [0001] direction. The alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا