Do you want to publish a course? Click here

A New Luminous blue variable in the outskirt of the Andromeda Galaxy

68   0   0.0 ( 0 )
 Added by Yang Huang
 Publication date 2019
  fields Physics
and research's language is English
 Authors Yang Huang




Ask ChatGPT about the research

The hot massive luminous blue variables (LBVs) represent an important evolutionary phase of massive stars. Here, we report the discovery of a new LBV -- LAMOST J0037+4016 in the distant outskirt of the Andromeda galaxy. It is located in the south-western corner (a possible faint spiral arm) of M31 with an unexpectedly large projection distance of $sim$ 22 kpc from the center. The optical light curve shows a 1.2 mag variation in $V$ band and its outburst and quiescence phases both last over several years. The observed spectra indicate an A-type supergiant at epoch close to the outburst phase and a hot B-type supergiant with weak [Fe II] emission lines at epoch of much dimmer brightness. The near-infrared color-color diagram further shows it follows the distribution of Galactic and M31 LBVs rather than B[e] supergiants. All the existing data strongly show that LAMOST J0037+4016 is an LBV. By spectral energy distribution fitting, we find it has a luminosity ($4.42 pm 1.64$)$times 10^5$ $L_{odot}$ and an initial mass $sim 30$ $M_{odot}$, indicating its nature of less luminosity class of LBV.



rate research

Read More

100 - Y. Solovyeva 2020
We search for LBV stars in galaxies outside the Local Group. Here we present a study of two bright $Halpha$ sources in the NGC 247 galaxy. Object j004703.27-204708.4 ($M_V=-9.08 pm 0.15^m$) shows the spectral lines typical for well-studied LBV stars: broad and bright emission lines of hydrogen and helium He I with P Cyg profiles, emission lines of iron Fe II, silicon Si II, nitrogen N II and carbon C II, forbidden iron [Fe II] and nitrogen [N II] lines. The variability of the object is $Delta B = 0.74pm0.09^m$ and $Delta V = 0.88pm0.09^m$, which makes it reliable LBV candidate. The star j004702.18-204739.93 ($M_V=-9.66 pm 0.23^m$) shows many emission lines of iron Fe II, forbidden iron lines [Fe II], bright hydrogen lines with broad wings, and also forbidden lines of oxygen [O I] and calcium [Ca II] formed in the circumstellar matter. The study of the light curve of this star also did not reveal significant variations in brightness ($Delta V = 0.29pm0.09^m$). We obtained estimates of interstellar absorption, the photosphere temperature, as well as bolometric magnitudes $M_text{bol}=-10.5^{+0.5}_{-0.4}$ and $M_text{bol}=-10.8^{+0.5}_{-0.6}$, which corresponds to bolometric luminosities $log(L_text{bol}/L_{odot})=6.11^{+0.20}_{-0.16}$ and $6.24^{+0.20}_{-0.25}$ for j004703.27-204708.4 and j004702.18-204739.93 respectively. Thus, the object j004703.27-204708.4 remains a reliable LBV candidate, while the object j004702.18-204739.93 can be classified as B[e]-supergiant.
We have found three new LBV candidates in the star-forming galaxy NGC 4736. They show typical well-known LBV spectra, broad and strong hydrogen lines, He I lines, many Fe II lines, and forbidden [Fe II] and [Fe III]. Using archival Hubble Space Telescope and ground-based telescope data, we have estimated the bolometric magnitudes of these objects from -8.4 to -11.5, temperatures, and reddening. Source NGC 4736_1 (Mv = -10.2 +/- 0.1 mag) demonstrated variability between 2005 and 2018 as Delta V = 1.1 mag and Delta B = 0.82 mag, the object belongs to LBV stars. NGC 4736_2 (Mv < -8.6 mag) shows P Cyg profiles and its spectrum has changed from 2015 to 2018. The brightness variability of NGC 4736_2 is Delta V = 0.5 mag and Delta B = 0.4 mag. In NGC 4736_3 (Mv = -8.2 +/- 0.2 mag), we found strong nebular lines, broad wings of hydrogen; the brightness variation is only 0.2 mag. Therefore, the last two objects may reside to LBV candidates.
We report the discovery of a new Galactic candidate Luminous Blue Variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at $24 mu$m in the {it Spitzer Space Telescope} archival data, whose morphology is similar to that of nebulae associated with known (c)LBVs and related evolved massive stars. Specifically, the core-halo morphology of MN112 bears a striking resemblance to the circumstellar nebula associated with the Galactic cLBV GAL 079.29+00.46, which suggests that both nebulae might have a similar origin and that the central star of MN112 is a LBV. The spectroscopy of the central star showed that its spectrum is almost identical to that of the bona fide LBV P Cygni, which also supports the LBV classification of the object. To further constrain the nature of MN112, we searched for signatures of possible high-amplitude ($ga 1$ mag) photometric variability of the central star using archival and newly obtained photometric data covering a 45 year period. We found that the B magnitude of the star was constant ($simeq$ 17.1$pm$0.3 mag) over this period, while in the I band the star brightened by $simeq 0.4$ mag during the last 17 years. Although the non-detection of large photometric variability leads us to use the prefix `candidate in the classification of MN112, we remind that the long-term photometric stability is not unusual for genuine LBVs and that the brightness of P Cygni remains relatively stable during the last three centuries.
94 - Ioana Boian , Jose Groh 2017
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post-explosion behaviour. They seem to belong to a class of events for which the fate as a genuine core-collapse supernova or a non-terminal explosion is still under debate. Our CMFGEN models suggest that the progenitor of SN2015bh had an effective temperature between 8700 and 10000 K, luminosity in the range ~ 1.8-4.74e6 Lsun, contained at least 25% H in mass at the surface, and half-solar Fe abundances. The results also show that the progenitor of SN 2015bh generated an extended wind with a mass-loss rate of ~ 6e-4 to 1.5e-3 Msun/yr and a velocity of 1000 km/s. We determined that the wind extended to at least 2.57e14 cm and lasted for at least 30 days prior to the observations, releasing 5e-5 Msun into the circumstellar medium. In analogy to 2009ip, we propose that this is the material that the explosive ejecta could interact at late epochs, perhaps producing observable signatures that can be probed with future observations. We conclude that the progenitor of SN 2015bh was most likely a warm luminous blue variable of at least 35 Msun before the explosion. Considering the high wind velocity, we cannot exclude the possibility that the progenitor was a Wolf-Rayet star that inflated just before the 2013 eruption, similar to HD5980 during its 1994 episode. If the star survived, late-time spectroscopy may reveal either a similar LBV or a Wolf-Rayet star, depending on the mass of the H envelope before the explosion. If the star exploded as a genuine SN, 2015bh would be a remarkable case of a successful explosion after black-hole formation in a star with a possible minimum mass 35 Msun at the pre-SN stage.
We report the results of optical spectroscopy of the candidate evolved massive star MN44 revealed via detection of a circular shell with the Spitzer Space Telescope. First spectra taken in 2009 May--June showed the Balmer lines in emission as well as numerous emission lines of iron, which is typical of luminous blue variables (LBVs) near the visual maximum. New observations carried out in 2015 May--September detected significant changes in the spectrum, indicating that the star became hotter. We found that these changes are accompanied by significant brightness variability of MN44. In particular, the I_c-band brightness decreased by approx 1.6 mag during the last six years and after reaching its minimum in 2015 June has started to increase. Using archival data, we also found that the I_c-band brightness increased by approx 3 mag in approx 30 yr preceding our observations. MN44 therefore represents the seventeenth known example of the Galactic bona fide LBVs. We detected a nitrogen-rich knot to the northwest of the star, which might represent an interstellar cloudlet interacting with the circumstellar shell. We discuss a possible association between MN44 and the INTEGRAL transient source of hard X-ray emission IGR J16327-4940, implying that MN44 might be either a colliding-wind binary or a high-mass X-ray binary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا