Do you want to publish a course? Click here

A single photonic cavity with two independent physical synthetic dimensions

126   0   0.0 ( 0 )
 Added by Avik Dutt
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The concept of synthetic dimensions, which has enabled the study of higher-dimensional physics on lower-dimensional physical structures, has generated significant recent interest in many branches of science ranging from ultracold-atomic physics to photonics, since such a concept provides a versatile platform for realizing effective gauge potentials and novel topological physics. Previous experiments demonstrating this concept have augmented the real-space dimensionality by one additional physical synthetic dimension. Here we endow a single ring resonator with two independent physical synthetic dimensions. Our system consists of a temporally modulated ring resonator with spatial coupling between the clockwise and counterclockwise modes, creating a synthetic Hall ladder along the frequency and pseudospin degrees of freedom for photons propagating in the ring. We experimentally observe a wide variety of rich physics, including effective spin-orbit coupling, magnetic fields, spin-momentum locking, a Meissner-to-vortex phase transition, and chiral currents, completely in synthetic dimensions. Our experiments demonstrate that higher-dimensional physics can be studied in simple systems by leveraging the concept of multiple simultaneous synthetic dimensions.



rate research

Read More

Topological phases feature robust edge states that are protected against the effects of defects and disorder. The robustness of these states presents opportunities to design technologies that are tolerant to fabrication errors and resilient to environmental fluctuations. While most topological phases rely on conservative, or Hermitian, couplings, recent theoretical efforts have combined conservative and dissipative couplings to propose new topological phases for ultracold atoms and for photonics. However, the topological phases that arise due to purely dissipative couplings remain largely unexplored. Here we realize dissipatively coupl
A remarkable property of quantum mechanics in two-dimensional (2D) space is its ability to support anyons, particles that are neither fermions nor bosons. Theory predicts that these exotic excitations can be realized as bound states confined near topological defects, like Majorana zero modes trapped in vortices in topological superconductors. Intriguingly, in the simplest cases the nontrivial phase that arises when such defects are braided around one another is not intrinsically quantum mechanical; rather, it can be viewed as a manifestation of the geometric (Pancharatnam-Berry) phase in wave mechanics, enabling the simulation of such phenomena in classical systems. Here we report the first experimental measurement in any system, quantum or classical, of the geometric phase due to such a braiding process. These measurements are obtained using an interferometer constructed from highly tunable 2D arrays of photonic waveguides. Our results introduce photonic lattices as a versatile playground for the experimental study of topological defects and their braiding, complementing ongoing efforts in solid-state systems and cold atomic gases.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
Lessons from Anderson localization highlight the importance of dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focussed on the phenomenon in one dimension using techniques of exact diagonalization and tensor networks. On the other hand, experiments in two dimensions have provided concrete results going beyond the previously numerically accessible limits while posing several challenging questions. We present the first large-scale numerical examination of a disordered Bose-Hubbard model in two dimensions realized in cold atoms, which shows entanglement based signatures of many-body localization. By generalizing a low-depth quantum circuit to two dimensions we approximate eigenstates in the experimental parameter regimes for large systems, which is beyond the scope of exact diagonalization. A careful analysis of the eigenstate entanglement structure provides an indication of the putative phase transition marked by a peak in the fluctuations of entanglement entropy in a parameter range consistent with experiments.
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We find conditions for population inversion in coherently pumped and incoherently pumped quantum dot. We show that squeezing in the output for two two photon laser is not visible using coherent as well as incoherent pump. We discuss effect of phonon coupling using recently developed polaron transformed master equation at low temperatures. We also propose scheme for generating squeezed state of field using four wave mixing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا