Do you want to publish a course? Click here

Distributed Equivalent Substitution Training for Large-Scale Recommender Systems

111   0   0.0 ( 0 )
 Added by Haidong Rong
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present Distributed Equivalent Substitution (DES) training, a novel distributed training framework for large-scale recommender systems with dynamic sparse features. DES introduces fully synchronous training to large-scale recommendation system for the first time by reducing communication, thus making the training of commercial recommender systems converge faster and reach better CTR. DES requires much less communication by substituting the weights-rich operators with the computationally equivalent sub-operators and aggregating partial results instead of transmitting the huge sparse weights directly through the network. Due to the use of synchronous training on large-scale Deep Learning Recommendation Models (DLRMs), DES achieves higher AUC(Area Under ROC). We successfully apply DES training on multiple popular DLRMs of industrial scenarios. Experiments show that our implementation outperforms the state-of-the-art PS-based training framework, achieving up to 68.7% communication savings and higher throughput compared to other PS-based recommender systems.



rate research

Read More

In this paper, we consider hybrid parallelism -- a paradigm that employs both Data Parallelism (DP) and Model Parallelism (MP) -- to scale distributed training of large recommendation models. We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training. DCT filters the entities to be communicated across the network through a simple hard-thresholding function, allowing only the most relevant information to pass through. For communication efficient DP, DCT compresses the parameter gradients sent to the parameter server during model synchronization. The threshold is updated only once every few thousand iterations to reduce the computational overhead of compression. For communication efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent across the network during the forward and backward propagation, respectively. This is done by identifying and updating only the most relevant neurons of the neural network for each training sample in the data. We evaluate DCT on publicly available natural language processing and recommender models and datasets, as well as recommendation systems used in production at Facebook. DCT reduces communication by at least $100times$ and $20times$ during DP and MP, respectively. The algorithm has been deployed in production, and it improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance.
Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6times 10^{11}$ tokens and based on the Common Crawl repository of web data.
The success of recommender systems in modern online platforms is inseparable from the accurate capture of users personal tastes. In everyday life, large amounts of user feedback data are created along with user-item online interactions in a variety of ways, such as browsing, purchasing, and sharing. These multiple types of user feedback provide us with tremendous opportunities to detect individuals fine-grained preferences. Different from most existing recommender systems that rely on a single type of feedback, we advocate incorporating multiple types of user-item interactions for better recommendations. Based on the observation that the underlying spectrum of user preferences is reflected in various types of interactions with items and can be uncovered by latent relational learning in metric space, we propose a unified neural learning framework, named Multi-Relational Memory Network (MRMN). It can not only model fine-grained user-item relations but also enable us to discriminate between feedback types in terms of the strength and diversity of user preferences. Extensive experiments show that the proposed MRMN model outperforms competitive state-of-the-art algorithms in a wide range of scenarios, including e-commerce, local services, and job recommendations.
Context-aware recommender systems (CARS) have gained increasing attention due to their ability to utilize contextual information. Compared to traditional recommender systems, CARS are, in general, able to generate more accurate recommendations. Latent factors approach accounts for a large proportion of CARS. Recently, a non-linear Gaussian Process (GP) based factorization method was proven to outperform the state-of-the-art methods in CARS. Despite its effectiveness, GP model-based methods can suffer from over-fitting and may not be able to determine the impact of each context automatically. In order to address such shortcomings, we propose a Gaussian Process Latent Variable Model Factorization (GPLVMF) method, where we apply an appropriate prior to the original GP model. Our work is primarily inspired by the Gaussian Process Latent Variable Model (GPLVM), which was a non-linear dimensionality reduction method. As a result, we improve the performance on the real datasets significantly as well as capturing the importance of each context. In addition to the general advantages, our method provides two main contributions regarding recommender system settings: (1) addressing the influence of bias by setting a non-zero mean function, and (2) utilizing real-valued contexts by fixing the latent space with real values.
Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا