Do you want to publish a course? Click here

Keck Observations Confirm a Super-Jupiter Planet Orbiting M-dwarf OGLE-2005-BLG-071L

116   0   0.0 ( 0 )
 Added by David Bennett
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present adaptive optics imaging from the NIRC2 instrument on the Keck-2 telescope that resolves the exoplanet host (and lens) star as it separates from the brighter source star. These observations yield the $K$-band brightness of the lens and planetary host star, as well as the lens-source relative proper motion, $mu_{rm rel,H}$. in the heliocentric reference frame. The $mu_{rm rel,H}$ measurement allows determination of the microlensing parallax vector, $pi_E$, which had only a single component determined by the microlensing light curve. The combined measurements of $mu_{rm rel,H}$ and $K_L$ provide the masses of the host stat, $M_{rm host} = 0.426pm 0.037 M_odot$, and planet, $m_p = 3.27 pm 0.32 M_{rm Jup}$ with a projected separation of $3.4pm 0.5,$AU. This confirms the tentative conclusion of a previous paper (Dong et al. 2009) that this super-Jupiter mass planet, OGLE-2005-BLG-071Lb, orbits an M-dwarf. Such planets are predicted to be rare by the core accretion theory and have been difficult to find with other methods, but there are two such planets with firm mass measurements from microlensing, and an additional 11 planetary microlens events with host mass estimates $< 0.5M_odot$ and planet mass estimates $> 2$ Jupiter masses that could be confirmed by high angular follow-up observations. We also point out that OGLE-2005-BLG-071L has separated far enough from its host star that it should be possible to measure the host star metallicity withspectra from a high angular resolution telescope such as Keck, the VLT, the Hubble Space Telescope or the James Webb Space Telescope.



rate research

Read More

We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{rm p} = 0.9pm 0.3 M_{rm J}$, and the planet is orbiting a star with a mass $M = 0.22pm 0.06 M_odot$. The second possible configuration (2$sigma$ away) consists of a planet with $M_{rm p}=0.6pm 0.3 M_{rm J}$ and host star with $M=0.14pm 0.06 M_odot$. The system is located in the Galactic disk 3 -- 4 kpc towards the Galactic bulge. In both cases, with an orbit size of 1.5 -- 2.0 AU, the planet is a cold Jupiter -- located well beyond the snow line of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a $1.71pm 0.27 M_{rm Jup}$ planet orbiting a $0.69pm 0.04M_{odot}$ K-dwarf host star at a distance of $6.89pm 0.77,$kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet-host star projected separation is only weakly constrained due to the close-wide light curve degeneracy; the 2$sigma$ projected separation range is 0.6--$7.2,$AU. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis that assumes that all stars have an equal chance of hosting a star of the observed mass ratio. This and the similar result for event MOA-2013-BLG-220 suggests that more massive stars may be more likely to host planets with a mass ratio in the $0.002 < q < 0.004$ range that orbit beyond the snow line. These results also indicate the importance of host star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASAs Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events. This host lens is the highest contrast lens-source detected in microlensing mass measurement analysis (the lens being 10$times$ fainter than the source). We present an improved method of calculating photometry and astrometry uncertainties based on the Jackknife method, which produces more accurate errors that are $sim$$2.5 times$ larger than previous estimates.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured by The Korea Microlensing Telescope Network (KMTNet). The event has three surviving planetary models that explain the observed light curves, with planet-host mass ratio q ~ 5.4 * 10^{-3}, 4.5 * 10^{-3} and 4.5 * 10^{-2}, respectively. The first model is the best-fit model, while the second model is disfavored by Deltachi^2 ~ 3. The last model is strongly disfavored by Deltachi^2 ~ 15 but not ruled out. A Bayesian analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown dwarf. The source-lens relative proper motion is mu_rel ~ 9 mas/yr, so the source and lens could be resolved by current adaptive-optics (AO) instruments in 2021 if the lens is luminous.
We report the discovery of a sub-Jupiter mass planet orbiting beyond the snow line of an M-dwarf most likely in the Galactic disk as part of the joint Spitzer and ground-based monitoring of microlensing planetary anomalies toward the Galactic bulge. The microlensing parameters are strongly constrained by the light curve modeling and in particular by the Spitzer-based measurement of the microlens parallax, $pi_mathrm{E}$. However, in contrast to many planetary microlensing events, there are no caustic crossings, so the angular Einstein radius, $theta_mathrm{E}$ has only an upper limit based on the light curve modeling alone. Additionally, the analysis leads us to identify 8 degenerate configurations: the four-fold microlensing parallax degeneracy being doubled by a degeneracy in the caustic structure present at the level of the ground-based solutions. To pinpoint the physical parameters, and at the same time to break the parallax degeneracy, we make use of a series of arguments: the $chi^2$ hierarchy, the Rich argument, and a prior Galactic model. The preferred configuration is for a host at $D_L=3.73_{-0.67}^{+0.66}~mathrm{kpc}$ with mass $M_mathrm{L}=0.30_{-0.12}^{+0.15}~mathrm{M_odot}$, orbited by a Saturn-like planet with $M_mathrm{planet}=0.43_{-0.17}^{+0.21}~mathrm{M_mathrm{Jup}}$ at projected separation $a_perp = 1.70_{-0.39}^{+0.38}~mathrm{au}$, about 2.1 times beyond the system snow line. Therefore, it adds to the growing population of sub-Jupiter planets orbiting near or beyond the snow line of M-dwarfs discovered by microlensing. Based on the rules of the real-time protocol for the selection of events to be followed up with Spitzer, this planet will not enter the sample for measuring the Galactic distribution of planets.
We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two higher order microlensing parameters. One of these, the angular Einstein radius theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax pi_E, which is due to the Earths orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا