No Arabic abstract
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduced density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate re-scaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the non-perturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.
In most realistic models for quantum chaotic systems, the Hamiltonian matrices in unperturbed bases have a sparse structure. We study correlations in eigenfunctions of such systems and derive explicit expressions for some of the correlation functions with respect to energy. The analytical results are tested in several models by numerical simulations. An application is given for a relation between transition probabilities.
The {it exchange} interaction arising from the particle indistinguishability is of central importance to physics of many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement induced by this interaction in an isolated system, namely, an ideal Fermi gas confined in a chaotic cavity, which evolves unitarily from a non-Gaussian pure state. We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure. Furthermore, for a class of initial states, such change leads to the approach to thermal equilibrium everywhere in the cavity, with the well-known Ehrenfest time in quantum chaos as the thermalization time. Specifically, the quantum expectation values of various correlation functions at different spatial scales are all determined by the Fermi-Dirac distribution. In addition, by using the reduced density matrix (RDM) and the entanglement entropy (EE) as local probes, we find that the gas inside a subsystem is at equilibrium with that outside, and its thermal entropy is the EE, even though the whole system is in a pure state. As a by-product of this work, we provide an analytical solution supporting an important conjecture on thermalization, made and numerically studied by Garrison and Grover in: Phys. Rev. X textbf{8}, 021026 (2018), and strengthen its statement.
Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra is modeled through appropriate ensemble of random matrix theory. However, a small subset of states violate this principle and display eigenstate localization, a counter-intuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modifies the spectral statistics. In this work, a $3 times 3$ random matrix model is used to obtain exact result for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as non-invariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes.
We study the growth of entanglement in quantum systems with a conserved quantity exhibiting diffusive transport, focusing on how initial inhomogeneities are imprinted on the entropy. We propose a simple effective model, which generalizes the minimal cut picture of textit{Jonay et al.} in such a way that the `line tension of the cut depends on the local entropy density. In the case of noisy dynamics, this is described by a Kardar-Parisi-Zhang (KPZ) equation coupled to a diffusing field. We investigate the resulting dynamics and find that initial inhomogeneities of the conserved charge give rise to features in the entanglement profile, whose width and height both grow in time as $proptosqrt{t}$. In particular, for a domain wall quench, diffusion restricts entanglement growth to be $S_text{vN} lesssim sqrt{t}$. We find that for charge density wave initial states, these features in the entanglement profile are present even after the charge density has equilibrated. Our conclusions are supported by numerical results on random circuits and deterministic spin chains.
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function $G(u)$, associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of $G(u)$ calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.