Do you want to publish a course? Click here

Stirring up an embedded star cluster with a moving gas filament

115   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform simulations to test the effects of a moving gas filament on a young star cluster (i.e. the Slingshot Model). We model Orion Nebula Cluster-like clusters as Plummer spheres and the Integral Shaped Filament gas as a cylindrical potential. We observe that in a static filament, an initially spherical cluster evolves naturally into an elongated distribution of stars. For sinusoidal moving filaments, we observe different remnants, and classify them into 4 categories.%: 3 different objects and one transition object. Healthy clusters, where almost all the stars stay inside the filament and the cluster; destroyed clusters are the opposite case, with almost no particles in the filament or near the centre of density of the clusters; ejected clusters, where a large fraction of stars are close to the centre of density of the stars , but almost none of them in the filament; and transition clusters, where roughly the same number of particles is ejected from the cluster and from the filament. An {{Orion Nebula Cluster-like}} cluster might stay inside the filament or be ejected, but it will not be destroyed.



rate research

Read More

Observations of the Orion-A integral shaped filament (ISF) have shown indications of an oscillatory motion of the gas filament. This evidence is based on both the wave-like morphology of the filament as well as the kinematics of the gas and stars, where the characteristic velocities of the stars require a dynamical heating mechanism. As proposed by Stutz and Gould (2016), such a heating mechanism (the Slingshot) may be the result of an oscillating gas filament in a gas-dominated (as opposed to stellar-mass dominated) system. Here we test this hypothesis with the first stellar-dynamical simulations in which the stars are subjected to the influence of an oscillating cylindrical potential. The accelerating, cylindrical background potential is populated with a narrow distribution of stars. By coupling the potential to N-body dynamics, we are able to measure the influence of the potential on the stellar distribution. The simulations provide evidence that the slingshot mechanism can successfully reproduce several stringent observational constraints. These include the stellar spread (both in projected position and in velocity) around the filament, the symmetry in these distributions, and a bulk motion of the stars with respect to the filament. Using simple considerations we show that star-star interactions are incapable of reproducing these spreads on their own when properly accounting for the gas potential. Thus, properly accounting for the gas potential is essential for understanding the dynamical evolution of star forming filamentary systems in the era of Gaia.
Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large ($gtrsim 50$~pc) and massive ($gtrsim 10^5$~$M_odot$) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. We have imaged one entire GMF located at $lsim$52--54$^circ$ longitude, GMF54 ($sim$68~pc long), in the empirical dense gas tracers using the HCN(1--0), HNC(1--0), HCO$^+$(1--0) lines, and their $^{13}$C isotopologue transitions, as well as the N$_2$H$^+$(1--0) line. We study the dense gas distribution, the column density probability density functions (N-PDFs) and the line ratios within the GMF. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to $^{13}$CO(1--0). We constructed the N-PDFs of H$_2$ for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log-log representation, and the HCO$^+$ N-PDF has the largest log-normal width and flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star forming and Photon-Dominate Regions (PDRs) have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N$_2$H$^+$/$^{13}$CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except ULIRGs.
We present the first results of the ALMA Fornax Cluster Survey (AlFoCS): a complete ALMA survey of all members of the Fornax galaxy cluster that were detected in HI or in the far infrared with Herschel. The sample consists of a wide variety of galaxy types, ranging from giant ellipticals to spiral galaxies and dwarfs, located in all (projected) areas of the cluster. It spans a mass range of 10^(~8.5 - 11) M_Sun. The CO(1-0) line was targeted as a tracer for the cold molecular gas, along with the associated 3 mm continuum. CO was detected in 15 of the 30 galaxies observed. All 8 detected galaxies with stellar masses below 3x10^9 M_Sun have disturbed molecular gas reservoirs, only 6 galaxies are regular/undisturbed. This implies that Fornax is still a very active environment, having a significant impact on its members. Both detections and non-detections occur at all projected locations in the cluster. Based on visual inspection, and the detection of molecular gas tails in alignment with the direction of the cluster centre, in some cases ram pressure stripping is a possible candidate for disturbing the molecular gas morphologies and kinematics. Derived gas fractions in almost all galaxies are lower than expected for field objects with the same mass, especially for the galaxies with disturbed molecular gas, with differences of sometimes more than an order of magnitude. The detection of these disturbed molecular gas reservoirs reveals the importance of the cluster environment for even the tightly bound molecular gas phase.
We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf galaxy Eridanus II (Eri II). Eri II, which has an absolute magnitude of M_V = -7.1, is located at a distance of 339 kpc, just beyond the virial radius of the Milky Way. We determine the star formation history of Eri II and measure the structure of the galaxy and its star cluster. We find that a star formation history consisting of two bursts, constrained to match the spectroscopic metallicity distribution of the galaxy, accurately describes the Eri II stellar population. The best-fit model implies a rapid truncation of star formation at early times, with >80% of the stellar mass in place before z~6. A small fraction of the stars could be as young as 8 Gyr, but this population is not statistically significant; Monte Carlo simulations recover a component younger than 9 Gyr only 15% of the time, where they represent an average of 7 +/- 4% of the population. These results are consistent with theoretical expectations for quenching by reionization. The HST depth and angular resolution enable us to show that Eri IIs cluster is offset from the center of the galaxy by a projected distance of 23 +/- 3 pc. This offset could be an indication of a small (~50-75 pc) dark matter core in Eri II. Moreover, we demonstrate that the cluster has a high ellipticity of 0.31 +0.05/-0.06 and is aligned with the orientation of Eri II within 3 +/- 6 degrees, likely due to tides. The stellar population of the cluster is indistinguishable from that of Eri II itself.
The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of star clusters is essential for measuring their physical properties and studying their evolution. We report on the use of the publicly available Code Investigating GALaxy Emission (CIGALE) SED fitting package to derive ages, stellar masses, and reddenings for star clusters identified in the Physics at High Angular resolution in Nearby GalaxieS-HST (PHANGS-HST) survey. Using samples of star clusters in the galaxy NGC 3351, we present results of benchmark analyses performed to validate the code and a comparison to SED fitting results from the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). We consider procedures for the PHANGS-HST SED fitting pipeline, e.g., the choice of single stellar population models, the treatment of nebular emission and dust, and the use of fluxes versus magnitudes for the SED fitting. We report on the properties of clusters in NGC 3351 and find, on average, the clusters residing in the inner star-forming ring of NGC 3351 are young ($< 10$ Myr) and massive ($10^{5} M_{odot}$) while clusters in the stellar bulge are significantly older. Cluster mass function fits yield $beta$ values around -2, consistent with prior results with a tendency to be shallower at the youngest ages. Finally, we explore a Bayesian analysis with additional physically-motivated priors for the distribution of ages and masses and analyze the resulting cluster distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا