Do you want to publish a course? Click here

ODEA: Orbital Dynamics in a complex Evolving Architecture -- Application to the planetary system HD 106906

78   0   0.0 ( 0 )
 Added by Laetitia Rodet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mixed-variable symplectic integrators are widely used in orbital dynamics. However, they have been developed for Solar system-type architectures, and can not handle evolving hierarchy, in particular in systems with two or more stellar components. Such configuration may have occurred in the history of HD 106906, a tight pair of F-type stars surrounded by a debris disk and a planetary-mass companion on a wide orbit. We present the new algorithm ODEA, based on the symplectic algorithm SWIFT HJS, that can model any system (binary,...) with unstable architecture. We study the peculiar system HD 106906 as a testcase for the code. We define and compute a criterion based on acceleration ratios to indicate when the initial hierarchy is not relevant anymore. A new hierarchy is then computed. The code is applied to study the two fly-bys that occurred on system HD 106906, recently evidenced by De Rosa & Kalas (2019), to determine if they could account for the wide orbit of the planet. Thousands of simulations have been performed to account for the uncertainty on the perturbers coordinates and velocities. The algorithm is able to handle any change of hierarchy, temporary or not. We used it to fully model HD 106906 encounters. The simulations confirm that the fly-bys could have stabilized the planet orbit, and show that it can account for the planet probable misalignment with respect to the disk plane as well as the disk morphology. However, that requires a small distance at closest approach (< 0.05 pc), and this configuration is not guaranteed. ODEA is a very good choice for the study of non-Solar type architecture. It can now adapt to an evolving hierarchy, and is thus suitable to study capture of planets and dust. Further observations of the perturbers, in particular their radial velocity, are required to conclude on the effects of the fly-by on system HD 106906.



rate research

Read More

We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the needle morphology seen for the HD 15115 debris disk. The planet candidate is oriented $sim$21$deg$ away from the position angle of the primarys debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primarys disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
We constrain the angular momentum architecture of HD 106906, a 13 $pm$ 2 Myr old system in the ScoCen complex composed of a compact central binary, a widely separated planetary-mass tertiary HD 106906 b, and a debris disk nested between the binary and tertiary orbital planes. We measure the orientations of three vectors: the companion spin axis, companion orbit normal, and disk normal. Using near-IR high-resolution spectra from Gemini/IGRINS, we obtain a projected rotational velocity of $vsin{i_p}$ = 9.5 $pm$ 0.2 km/s for HD 106906 b. This measurement together with a published photometric rotation period implies the companion is viewed nearly pole-on, with a line-of-sight spin axis inclination of $i_p$ = 14 $pm$ 4 degrees or 166 $pm$ 4 degrees. By contrast, the debris disk is known to be viewed nearly edge-on. The likely misalignment of all three vectors suggests HD 106906 b formed by gravitational instability in a turbulent environment, either in a disk or cloud setting.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7.1 (650 AU). It is confirmed to be comoving with its $13pm2$ Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companions luminosity corresponds to a mass of $11pm2 M_{Jup}$, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette $J/H/K$ spectrum as L$2.5pm1$; the triangular $H$-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric ($e>0.65$) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations $>35$ AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at $<1%$, is unusually small.
We spectroscopically characterize the atmosphere of HD 106906b, a young low-mass companion near the deuterium burning limit. The wide separation from its host star of 7.1 makes it an ideal candidate for high S/N and high-resolution spectroscopy. We aim to derive new constraints on the spectral type, effective temperature, and luminosity of HD106906b and also to provide a high S/N template spectrum for future characterization of extrasolar planets. We obtained 1.1-2.5 $mu$m integral field spectroscopy with the VLT/SINFONI instrument with a spectral resolution of R~2000-4000. New estimates of the parameters of HD 106906b are derived by analyzing spectral features, comparing the extracted spectra to spectral catalogs of other low-mass objects, and fitting with theoretical isochrones. We identify several spectral absorption lines that are consistent with a low mass for HD 106906b. We derive a new spectral type of L1.5$pm$1.0, one subclass earlier than previous estimates. Through comparison with other young low-mass objects, this translates to a luminosity of log($L/L_odot$)=$-3.65pm0.08$ and an effective temperature of Teff=$1820pm240$ K. Our new mass estimates range between $M=11.9^{+1.7}_{-0.8} M_{rm Jup}$ (hot start) and $M=14.0^{+0.2}_{-0.5} M_{rm Jup}$ (cold start). These limits take into account a possibly finite formation time, i.e., HD 106906b is allowed to be 0--3 Myr younger than its host star. We exclude accretion onto HD 106906b at rates $dot{M}>4.8times10^{-10} M_{rm Jup}$yr$^{-1}$ based on the fact that we observe no hydrogen (Paschen-$beta$, Brackett-$gamma$) emission. This is indicative of little or no circumplanetary gas. With our new observations, HD 106906b is the planetary-mass object with one of the highest S/N spectra yet. We make the spectrum available for future comparison with data from existing and next-generation (e.g., ELT and JWST) spectrographs.
As part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS), we present new radial velocities and photometry of the HD 192263 system. Our analysis of the already available Keck-HIRES and CORALIE radial velocity measurements together with the five new Keck measurements we report in this paper results in improved orbital parameters for the system. We derive constraints on the size and phase location of the transit window for HD 192263b, a Jupiter-mass planet with a period of 24.3587 pm 0.0022 days. We use 10 years of Automated Photoelectric Telescope (APT) photometry to analyze the stellar variability and search for planetary transits. We find continuing evidence of spot activity with periods near 23.4 days. The shape of the corresponding photometric variations changes over time, giving rise to not one but several Fourier peaks near this value. However, none of these frequencies coincides with the planets orbital period and thus we find no evidence of star-planet interactions in the system. We attribute the ~23-day variability to stellar rotation. There are also indications of spot variations on longer (8 years) timescales. Finally, we use the photometric data to exclude transits for a planet with the predicted radius of 1.09 RJ, and as small as 0.79 RJ.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا