No Arabic abstract
Signal retrieval from a series of indirect measurements is a common task in many imaging, metrology and characterization platforms in science and engineering. Because most of the indirect measurement processes are well-described by physical models, signal retrieval can be solved with an iterative optimization that enforces measurement consistency and prior knowledge on the signal. These iterative processes are time-consuming and only accommodate a linear measurement process and convex signal constraints. Recently, neural networks have been widely adopted to supersede iterative signal retrieval methods by approximating the inverse mapping of the measurement model. However, networks with deterministic processes have failed to distinguish signal ambiguities in an ill-posed measurement system, and retrieved signals often lack consistency with the measurement. In this work we introduce a variational generative model to capture the distribution of all possible signals, given a particular measurement. By exploiting the known measurement model in the variational generative framework, our signal retrieval process resolves the ambiguity in the forward process, and learns to retrieve signals that satisfy the measurement with high fidelity in a variety of linear and nonlinear ill-posed systems, including ultrafast pulse retrieval, coded aperture compressive video sensing and image retrieval from Fresnel hologram.
Using a low-dimensional parametrization of signals is a generic and powerful way to enhance performance in signal processing and statistical inference. A very popular and widely explored type of dimensionality reduction is sparsity; another type is generative modelling of signal distributions. Generative models based on neural networks, such as GANs or variational auto-encoders, are particularly performant and are gaining on applicability. In this paper we study spiked matrix models, where a low-rank matrix is observed through a noisy channel. This problem with sparse structure of the spikes has attracted broad attention in the past literature. Here, we replace the sparsity assumption by generative modelling, and investigate the consequences on statistical and algorithmic properties. We analyze the Bayes-optimal performance under specific generative models for the spike. In contrast with the sparsity assumption, we do not observe regions of parameters where statistical performance is superior to the best known algorithmic performance. We show that in the analyzed cases the approximate message passing algorithm is able to reach optimal performance. We also design enhanced spectral algorithms and analyze their performance and thresholds using random matrix theory, showing their superiority to the classical principal component analysis. We complement our theoretical results by illustrating the performance of the spectral algorithms when the spikes come from real datasets.
The ability to extract generative parameters from high-dimensional fields of data in an unsupervised manner is a highly desirable yet unrealized goal in computational physics. This work explores the use of variational autoencoders (VAEs) for non-linear dimension reduction with the aim of disentangling the low-dimensional latent variables to identify independent physical parameters that generated the data. A disentangled decomposition is interpretable and can be transferred to a variety of tasks including generative modeling, design optimization, and probabilistic reduced order modelling. A major emphasis of this work is to characterize disentanglement using VAEs while minimally modifying the classic VAE loss function (i.e. the ELBO) to maintain high reconstruction accuracy. Disentanglement is shown to be highly sensitive to rotations of the latent space, hyperparameters, random initializations and the learning schedule. The loss landscape is characterized by over-regularized local minima which surrounds desirable solutions. We illustrate comparisons between disentangled and entangled representations by juxtaposing learned latent distributions and the true generative factors in a model porous flow problem. Implementing hierarchical priors (HP) is shown to better facilitate the learning of disentangled representations over the classic VAE. The choice of the prior distribution is shown to have a dramatic effect on disentanglement. In particular, the regularization loss is unaffected by latent rotation when training with rotationally-invariant priors, and thus learning non-rotationally-invariant priors aids greatly in capturing the properties of generative factors, improving disentanglement. Some issues inherent to training VAEs, such as the convergence to over-regularized local minima are illustrated and investigated, and potential techniques for mitigation are presented.
Generative neural samplers are probabilistic models that implement sampling using feedforward neural networks: they take a random input vector and produce a sample from a probability distribution defined by the network weights. These models are expressive and allow efficient computation of samples and derivatives, but cannot be used for computing likelihoods or for marginalization. The generative-adversarial training method allows to train such models through the use of an auxiliary discriminative neural network. We show that the generative-adversarial approach is a special case of an existing more general variational divergence estimation approach. We show that any f-divergence can be used for training generative neural samplers. We discuss the benefits of various choices of divergence functions on training complexity and the quality of the obtained generative models.
We develop a recurrent gamma belief network (rGBN) for radar automatic target recognition (RATR) based on high-resolution range profile (HRRP), which characterizes the temporal dependence across the range cells of HRRP. The proposed rGBN adopts a hierarchy of gamma distributions to build its temporal deep generative model. For scalable training and fast out-of-sample prediction, we propose the hybrid of a stochastic-gradient Markov chain Monte Carlo (MCMC) and a recurrent variational inference model to perform posterior inference. To utilize the label information to extract more discriminative latent representations, we further propose supervised rGBN to jointly model the HRRP samples and their corresponding labels. Experimental results on synthetic and measured HRRP data show that the proposed models are efficient in computation, have good classification accuracy and generalization ability, and provide highly interpretable multi-stochastic-layer latent structure.
Deep learning-based image reconstruction methods have achieved promising results across multiple MRI applications. However, most approaches require large-scale fully-sampled ground truth data for supervised training. Acquiring fully-sampled data is often either difficult or impossible, particularly for dynamic contrast enhancement (DCE), 3D cardiac cine, and 4D flow. We present a deep learning framework for MRI reconstruction without any fully-sampled data using generative adversarial networks. We test the proposed method in two scenarios: retrospectively undersampled fast spin echo knee exams and prospectively undersampled abdominal DCE. The method recovers more anatomical structure compared to conventional methods.