No Arabic abstract
We investigate the phase diagram and critical behavior of three-dimensional multicomponent Abelian-Higgs models, in which an N-component complex field z_x^a of unit length and charge is coupled to compact quantum electrodynamics in the usual Wilson lattice formulation. We determine the phase diagram and study the nature of the transition line for N=2 and N=4. Two phases are identified, specified by the behavior of the gauge-invariant local composite operator Q_x^{ab} = bar{z}_x^a z_x^b - delta^{ab}/N, which plays the role of order parameter. In one phase, we have langle Q_x^{ab}rangle =0, while in the other Q_x^{ab} condenses. Gauge correlations are never critical: gauge excitations are massive for any finite coupling. The two phases are separated by a transition line. Our numerical data are consistent with the simple scenario in which the nature of the transition is independent of the gauge coupling. Therefore, for any finite positive value of the gauge coupling, we predict a continuous transition in the Heisenberg universality class for N=2 and a first-order transition for N=4. However, notable crossover phenomena emerge for large gauge couplings, when gauge fluctuations are suppressed. Such crossover phenomena are related to the unstable O(2N) fixed point, describing the behavior of the model in the infinite gauge-coupling limit.
We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge q, so that they have local U(1) and global SU(N) symmetries. We discuss the dependence of the phase diagram, and the nature of the phase transitions, on the charge q of the scalar field and the number N>1 of components. We argue that the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement/deconfinement of external charge-one particles. The transition lines separating the different phases show different features, which also depend on the number N of components. Therefore, the phase diagram of higher-charge models substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for doubly-charged unit-length scalar fields with small and large number of components, i.e. N=2 and N=25.
We consider a noncompact lattice formulation of the three-dimensional electrodynamics with $N$-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any $Nge 2$, the phase diagram shows three phases differing for the behavior of the scalar-field and gauge-field correlations: the Coulomb phase (short-ranged scalar and long-ranged gauge correlations), the Higgs phase (condensed scalar-field and gapped gauge correlations), and the molecular phase (condensed scalar-field and long-ranged gauge correlations). They are separated by three transition lines meeting at a multicritical point. Their nature depends on the coexisting phases and on the number $N$ of components of the scalar field. In particular, the Coulomb-to-molecular transition line (where gauge correlations are irrelevant) is associated with the Landau-Ginzburg-Wilson $Phi^4$ theory sharing the same SU($N$) global symmetry but without explicit gauge fields. On the other hand, the Coulomb-to-Higgs transition line (where gauge correlations are relevant) turns out to be described by the continuum Abelian-Higgs field theory with explicit gauge fields. Our numerical study is based on finite-size scaling analyses of Monte Carlo simulations with $C^*$ boundary conditions (appropriate for lattice systems with noncompact gauge variables, unlike periodic boundary conditions), for several values of $N$, i.e., $N=2, 4, 10, 15$, and $25$. The numerical results agree with the renormalization-group predictions of the continuum field theories. In particular, the Coulomb-to-Higgs transitions are continuous for $Ngtrsim 10$, in agreement with the predictions of the Abelian-Higgs field theory.
Current implementations of fluctuating lattice Boltzmann equations (FLBE) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem (FDT) directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the ortho-normal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and non-ideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.
The three-dimensional lattice Higgs model with compact U(1) gauge symmetry and unit charge is investigated by means of Monte Carlo simulations. The full model with fluctuating Higgs amplitude is simulated, and both energy as well as topological observables are measured. The data show a Higgs and a confined phase separated by a well-defined phase boundary, which is argued to be caused by proliferating vortices. For fixed gauge coupling, the phase boundary consists of a line of first-order phase transitions at small Higgs self-coupling, ending at a critical point. The phase boundary then continues as a Kertesz line across which thermodynamic quantities are nonsingular. Symmetry arguments are given to support these findings.
We discuss a general framework for the realization of a family of abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable to quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions originally proposed by Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4x4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices where we discuss in detail a protocol for the preparation of the ground state. We also comment on the relation between standard compact U(1) LGT and the model considered.