Do you want to publish a course? Click here

AC-Teach: A Bayesian Actor-Critic Method for Policy Learning with an Ensemble of Suboptimal Teachers

339   0   0.0 ( 0 )
 Added by Andrey Kurenkov
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The exploration mechanism used by a Deep Reinforcement Learning (RL) agent plays a key role in determining its sample efficiency. Thus, improving over random exploration is crucial to solve long-horizon tasks with sparse rewards. We propose to leverage an ensemble of partial solutions as teachers that guide the agents exploration with action suggestions throughout training. While the setup of learning with teachers has been previously studied, our proposed approach - Actor-Critic with Teacher Ensembles (AC-Teach) - is the first to work with an ensemble of suboptimal teachers that may solve only part of the problem or contradict other each other, forming a unified algorithmic solution that is compatible with a broad range of teacher ensembles. AC-Teach leverages a probabilistic representation of the expected outcome of the teachers and students actions to direct exploration, reduce dithering, and adapt to the dynamically changing quality of the learner. We evaluate a variant of AC-Teach that guides the learning of a Bayesian DDPG agent on three tasks - path following, robotic pick and place, and robotic cube sweeping using a hook - and show that it improves largely on sampling efficiency over a set of baselines, both for our target scenario of unconstrained suboptimal teachers and for easier setups with optimal or single teachers. Additional results and videos at https://sites.google.com/view/acteach/home.



rate research

Read More

Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
We investigate the combination of actor-critic reinforcement learning algorithms with uniform large-scale experience replay and propose solutions for two challenges: (a) efficient actor-critic learning with experience replay (b) stability of off-policy learning where agents learn from other agents behaviour. We employ those insights to accelerate hyper-parameter sweeps in which all participating agents run concurrently and share their experience via a common replay module. To this end we analyze the bias-variance tradeoffs in V-trace, a form of importance sampling for actor-critic methods. Based on our analysis, we then argue for mixing experience sampled from replay with on-policy experience, and propose a new trust region scheme that scales effectively to data distributions where V-trace becomes unstable. We provide extensive empirical validation of the proposed solution. We further show the benefits of this setup by demonstrating state-of-the-art data efficiency on Atari among agents trained up until 200M environment frames.
We introduce an Actor-Critic Ensemble(ACE) method for improving the performance of Deep Deterministic Policy Gradient(DDPG) algorithm. At inference time, our method uses a critic ensemble to select the best action from proposals of multiple actors running in parallel. By having a larger candidate set, our method can avoid actions that have fatal consequences, while staying deterministic. Using ACE, we have won the 2nd place in NIPS17 Learning to Run competition, under the name of Megvii-hzwer.
Reinforcement learning algorithms are typically geared towards optimizing the expected return of an agent. However, in many practical applications, low variance in the return is desired to ensure the reliability of an algorithm. In this paper, we propose on-policy and off-policy actor-critic algorithms that optimize a performance criterion involving both mean and variance in the return. Previous work uses the second moment of return to estimate the variance indirectly. Instead, we use a much simpler recently proposed direct variance estimator which updates the estimates incrementally using temporal difference methods. Using the variance-penalized criterion, we guarantee the convergence of our algorithm to locally optimal policies for finite state action Markov decision processes. We demonstrate the utility of our algorithm in tabular and continuous MuJoCo domains. Our approach not only performs on par with actor-critic and prior variance-penalization baselines in terms of expected return, but also generates trajectories which have lower variance in the return.
We reformulate the option framework as two parallel augmented MDPs. Under this novel formulation, all policy optimization algorithms can be used off the shelf to learn intra-option policies, option termination conditions, and a master policy over options. We apply an actor-critic algorithm on each augmented MDP, yielding the Double Actor-Critic (DAC) architecture. Furthermore, we show that, when state-value functions are used as critics, one critic can be expressed in terms of the other, and hence only one critic is necessary. We conduct an empirical study on challenging robot simulation tasks. In a transfer learning setting, DAC outperforms both its hierarchy-free counterpart and previous gradient-based option learning algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا