Do you want to publish a course? Click here

Boundary N=2 Theory, Floer Homologies, Affine Algebras, and the Verlinde Formula

122   0   0.0 ( 0 )
 Added by Kee-Seng Png
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N=2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Munozs theorem relating quantum and instanton Floer cohomology, (iii) their monopole counterparts, and (iv) their higher rank generalizations. In the case where the boundary is a Seifert manifold, one can also relate its instanton Floer homology to modules of an affine algebra via a 2d A-model with target the based loop group. As an offshoot, we will be able to demonstrate an action of the affine algebra on the quantum cohomology of the moduli space of flat connections on a Riemann surface, as well as derive the Verlinde formula.



rate research

Read More

We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $chi_{10}$ and Borcherds type lifts of three quasi-Jacobi forms which are all related to the Weierstrass elliptic function. We also conjecture that the generating function of virtual cobordism classes of these moduli spaces depends only on $chi(mathcal{O}_S)$ and $K_S^2$ via two universal functions, one of which is determined by the cobordism classes of Hilbert schemes of points on $K3$. We present generalizations of these conjectures, e.g. to arbitrary surfaces with $p_g>0$ and $b_1=0$. We use a result of J. Shen to express the virtual cobordism class in terms of descendent Donaldson invariants. In a prequel we used T. Mochizukis formula, universality, and toric calculations to compute such Donaldson invariants in the setting of virtual $chi_y$-genera. Similar techniques allow us to verify our new conjectures in many cases.
188 - Sergei Gukov , Du Pei 2015
We study complex Chern-Simons theory on a Seifert manifold $M_3$ by embedding it into string theory. We show that complex Chern-Simons theory on $M_3$ is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between 1) the Verlinde algebra, 2) quantum cohomology of the Grassmannian, 3) Chern-Simons theory on $Sigmatimes S^1$ and 4) index of a spin$^c$ Dirac operator on the moduli space of flat connections to a new set of relations between 1) the equivariant Verlinde algebra for a complex group, 2) the equivariant quantum K-theory of the vortex moduli space, 3) complex Chern-Simons theory on $Sigma times S^1$ and 4) the equivariant index of a spin$^c$ Dirac operator on the moduli space of Higgs bundles.
We prove a generalization of the Verlinde formula to fermionic rational conformal field theories. The fusion coefficients of the fermionic theory are equal to sums of fusion coefficients of its bosonic projection. In particular, fusion coefficients of the fermionic theory connecting two conjugate Ramond fields with the identity are either one or two. Therefore, one is forced to weaken the axioms of fusion algebras for fermionic theories. We show that in the special case of fermionic W(2,d)-algebras these coefficients are given by the dimensions of the irreducible representations of the horizontal subalgebra on the highest weight. As concrete examples we discuss fusion algebras of rational models of fermionic W(2,d)-algebras including minimal models of the $N=1$ super Virasoro algebra as well as $N=1$ super W-algebras SW(3/2,d).
Surgery exact triangles in various 3-manifold Floer homology theories provide an important tool in studying and computing the relevant Floer homology groups. These exact triangles relate the invariants of 3-manifolds, obtained by three different Dehn surgeries on a fixed knot. In this paper, the behavior of $SU(N)$-instanton Floer homology with respect to Dehn surgery is studied. In particular, it is shown that there are surgery exact tetragons and pentagons, respectively, for $SU(3)$- and $SU(4)$-instanton Floer homologies. It is also conjectured that $SU(N)$-instanton Floer homology in general admits a surgery exact $(N+1)$-gon. An essential step in the proof is the construction of a family of asymptotically cylindrical metrics on ALE spaces of type $A_n$. This family is parametrized by the $(n-2)$-dimensional associahedron and consists of anti-self-dual metrics with positive scalar curvature. The metrics in the family also admit a torus symmetry.
Around 1988, Floer introduced two important theories: instanton Floer homology as invariants of 3-manifolds and Lagrangian Floer homology as invariants of pairs of Lagrangians in symplectic manifolds. Soon after that, Atiyah conjectured that the two theories should be related to each other and Lagrangian Floer homology of certain Lagrangians in the moduli space of flat connections on Riemann surfaces should recover instanton Floer homology. However, the space of flat connections on a Riemann surface is singular and the first step to address this conjecture is to make sense of Lagrangian Floer homology on this space. In this note, we formulate a possible approach to resolve this issue. A strategy to construct the desired isomorphism in the Atiyah-Floer conjecture is also sketched. We also use the language of A infty-categories to state generalizations of the Atiyah-Floer conjecture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا