No Arabic abstract
We present the star formation history (SFH) of the isolated (D~970 kpc) Local Group dwarf galaxy WLM measured from color-magnitude diagrams constructed from deep Hubble Space Telescope imaging. Our observations include a central (0.5 $r_h$) and outer field (0.7 $ r_h$) that reach below the oldest main sequence turnoff. WLM has no early dominant episode of star formation: 20% of its stellar mass formed by ~12.5 Gyr ago (z~5). It also has an SFR that rises to the present with 50% of the stellar mass within the most recent 5 Gyr (z<0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark matter core creation. The SFHs of real isolated dwarf galaxies and those from the the Feedback In Realistic Environment suite are in good agreement for $M_{star}(z=0) sim 10^7-10^9 M_{odot}$, but in worse agreement at lower masses ($M_{star}(z=0) sim 10^5-10^7 M_{odot}$). These differences may be explainable by systematics in the models (e.g., reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
$Lambda$-Warm Dark Matter (WDM) has been proposed as alternative scenario to $Lambda$ cold dark matter (CDM), motivated by discrepancies at the scale of dwarf galaxies, with less small-scale power and realized by collisionless particles with energies in the range $1-3$ keV. We present a new approach to constrain the viability of such WDM models using star formation histories of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high time-resolution star formation histories (SFHs) obtained with HST-based color magnitude diagrams with the range of possible collapse redshifts of their dark matter halos expected in CDM and in different WDM scenarios. The collapse redshift is inferred after determining a plausible infall mass of the subhalo. This is based on the current mass of individual dwarf inferred from stellar kinematics combined with results of cosmological simulations providing information on the subhalo evolution. Since WDM subhalos close to the filtering mass scale form significantly later than CDM, we show that they are in the first place difficult to reconcile with a truncation of star formation occurring as early as $zgeq 3$. The Ultra-Faint Dwarfs (UFDs) provide the most stringent constraints. Using 6 UFDs with the best determination of the SFHs, we show that we can exclude a 1 keV warm particle to a 2-$sigma$ confidence interval consistently with other methods reported in the literature. For some objects the $2$ keV model is also excluded. We discuss the various caveats of the method, most notably the low number of dwarfs with accurately determined star formation histories and the uncertainties in the determination of the infall mass of the subhalos. Our preliminary analysis serves as a pathfinder for future investigations that will combine upcoming accurate SFHs for more local dSphs with direct analysis of WDM cosmological simulations with baryons.
Gaia DR2 provides unprecedented precision in measurements of the distance and kinematics of stars in the solar neighborhood. Through applying unsupervised machine learning on DR2s 5-dimensional dataset (3d position + 2d velocity), we identify a number of clusters, associations, and co-moving groups within 1 kpc and $|b|<30^circ$ (many of which have not been previously known). We estimate their ages with the precision of $sim$0.15 dex. Many of these groups appear to be filamentary or string-like, oriented in parallel to the Galactic plane, and some span hundreds of pc in length. Most of these string lack a central cluster, indicating that their filamentary structure is primordial, rather than the result of tidal stripping or dynamical processing. The youngest strings ($<$100 Myr) are orthogonal to the Local Arm. The older ones appear to be remnants of several other arm-like structures that cannot be presently traced by dust and gas. The velocity dispersion measured from the ensemble of groups and strings increase with age, suggesting a timescale for dynamical heating of $sim$300 Myr. This timescale is also consistent with the age at which the population of strings begins to decline, while the population in more compact groups continues to increase, suggesting that dynamical processes are disrupting the weakly bound string populations, leaving only individual clusters to be identified at the oldest ages. These data shed a new light on the local galactic structure and a large scale cloud collapse.
We use high-resolution cosmological zoom-in simulations from the FIRE project to make predictions for the covering fractions of neutral hydrogen around galaxies at z=2-4. These simulations resolve the interstellar medium of galaxies and explicitly implement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main halos covering the mass range M_h~10^9-6x10^12 Msun at z=2, including 12 halos in the mass range M_h~10^11-10^12 Msun corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the HI covering fractions in galaxy halos by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict HI covering fractions for Lyman limit systems (LLSs) consistent with measurements around z~2-2.5 LBGs; these covering fractions are a factor ~2 higher than our previous calculations without galactic winds. The fractions of HI absorbers arising in inflows and in outflows are on average ~50% but exhibit significant time variability, ranging from ~10% to ~90%. For our most massive halos, we find a factor ~3 deficit in the LLS covering fraction relative to what is measured around quasars at z~2, suggesting that the presence of a quasar may affect the properties of halo gas on ~100 kpc scales. The predicted covering fractions, which decrease with time, peak at M_h~10^11-10^12 Msun, near the peak of the star formation efficiency in dark matter halos. In our simulations, star formation and galactic outflows are highly time dependent; HI covering fractions are also time variable but less so because they represent averages over large areas.
The rich SMC star cluster NGC419 has recently been found to present both a broad main sequence turn-off and a dual red clump of giants, in the sharp colour-magnitude diagrams (CMD) derived from the High Resolution Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope. In this work, we apply to the NGC419 data the classical method of star formation history (SFH) recovery via CMD reconstruction, deriving for the first time this function for a star cluster with multiple turn-offs. The values for the cluster metallicity, reddening, distance and binary fraction, were varied within the limits allowed by present observations. The global best-fitting solution is an excellent fit to the data, reproducing all the CMD features with striking accuracy. The corresponding star formation rate is provided together with estimates of its random and systematic errors. Star formation is found to last for at least 700 Myr, and to have a marked peak at the middle of this interval, for an age of 1.5 Gyr. Our findings argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1 Gyr. It remains to be tested whether alternative hypotheses, such as a main sequence spread caused by rotation, could produce similarly good fits to the data.