No Arabic abstract
Quantum reflection of thermal He atoms from various surfaces (glass slide, GaAs wafer, flat and structured Cr) at grazing conditions is studied within the elastic close-coupling formalism. Comparison with the experimental results of B.S. Zhao et al, Phys. Rev. Lett. {bf 105}, 133203 (2010) is quite reasonable but the conclusions of the present theoretical analysis are different from those discussed in the experimental work. The universal linear behavior observed in the dependence of the reflection probability on the incident wave vector component perpendicular to the surface is only valid at small values of the component whereas, at larger values, deviation from the linearity is evident, approaching a quadratic dependence at higher values. The surface roughness seems to play no important role in this scattering. Moreover, the claim that one observes a transition from quantum to classical reflection seems to be imprecise.
We here report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component $k_z$ of the incident wave-vector of the atom the reflection probability is found to be a function of $k_z$ only. This behavior is explained by quantum-reflection at the attractive branch of the Casimir-van der Waals interaction potential. For larger values of $k_z$ the overall reflection probability decreases rapidly and is found to also depend on the parallel component $k_x$ of the wave-vector. The material specific $k_x$ dependence for this classical reflection at the repulsive branch of the potential is explained qualitatively in terms of the averaging-out of the surface roughness under grazing incidence conditions.
We show that periodically doped, flat surfaces can act as reflective diffraction gratings for atomic and molecular matter waves. The diffraction element is realized by exploiting that charged dopants locally suppress quantum reflection from the Casimir-Polder potential. We present a general quantum scattering theory for reflection off periodically charged surfaces and discuss the requirements for the observation of multiple diffraction peaks.
We observe high-resolution diffraction patterns of a thermal-energy helium-atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-$mu$m-wide Cr strips patterned on a quartz substrate and has a periodicity of 20 $mu$m. Fully-resolved diffraction peaks up to the $7^{rm th}$ order are observed at grazing angles up to 20 mrad. With changes in de Broglie wavelength or grazing angle the relative diffraction intensities show significant variations which shed light on the nature of the atom-surface interaction potential. The observations are explained in terms of quantum reflection at the long-range attractive Casimir-van der Waals potential.
We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our addressing scheme operates with a high spatial resolution and qubit rotations on individual atoms are performed with 99% contrast. In a final read-out operation we analyze each individual atomic state. Finally, we have measured the coherence time and identified the predominant dephasing mechanism for our register.
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a `quantum memory while idle. The $^{31}$P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the $^{31}$P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched $^{28}$Si. The fidelity of the memory process is characterised via both state and process tomography. We report an overall process fidelity of $F_p =$81${pm}$7%, a memory fidelity ($F_m$) of over 90%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following high-power radiofrequency pulses.