Theory of reflectionless scattering modes


Abstract in English

We develop the theory of a special type of scattering state in which a set of asymptotic channels are chosen as inputs and the complementary set as outputs, and there is zero reflection back into the input channels. In general an infinite number of such solutions exist at discrete complex frequencies. Our results apply to linear electromagnetic and acoustic wave scattering and also to quantum scattering, in all dimensions, for arbitrary geometries including scatterers in free space, and for any choice of the input/output sets. We refer to such a state as reflection-zero (R-zero) when it occurs off the real-frequency axis and as an Reflectionless Scattering Mode (RSM) when it is tuned to a real frequency as a steady-state solution. Such reflectionless behavior requires a specific monochromatic input wavefront, given by the eigenvector of a filtered scattering matrix with eigenvalue zero. Steady-state RSMs may be realized by index tuning which do not break flux conservation or by gain-loss tuning. RSMs of flux-conserving cavities are bidirectional while those of non-flux-conserving cavities are generically unidirectional. Cavities with ${cal PT}$-symmetry have unidirectional R-zeros in complex-conjugate pairs, implying that reflectionless states naturally arise at real frequencies for small gain-loss parameter but move into the complex-frequency plane after a spontaneous ${cal PT}$-breaking transition. Numerical examples of RSMs are given for one-dimensional cavities with and without gain/loss, a ${cal PT}$ cavity, a two-dimensional multiwaveguide junction, and a two-dimensional deformed dielectric cavity in free space. We outline and implement a general technique for solving such problems, which shows promise for designing photonic structures which are perfectly impedance-matched for specific inputs, or can perfectly convert inputs from one set of modes to a complementary set.

Download