Revisiting the orbital tracking problem


Abstract in English

Consider a space object in an orbit about the earth. An uncertain initial state can be represented as a point cloud which can be propagated to later times by the laws of Newtonian motion. If the state of the object is represented in Cartesian earth centered inertial (Cartesian-ECI) coordinates, then even if initial uncertainty is Gaussian in this coordinate system, the distribution quickly becomes non-Gaussian as the propagation time increases. Similar problems arise in other standard fixed coordinate systems in astrodynamics, e.g. Keplerian and to some extent equinoctial. To address these problems, a local Adapted STructural (AST) coordinate system has been developed in which uncertainty is represented in terms of deviations from a central state. Given a sequence of angles-only measurements, the iterated nonlinear extended (IEKF) and unscented (IUKF) Kalman filters are often the most appropriate variants to use. In particular, they can be much more accurate than the more commonly used non-iterat

Download