Super-quantum discord is an extension of the quantum discord concept where weak measurements are made instead of projective measurements. We study the temperature behavior of the super-quantum discord for two real magnetic materials. We extract information about super-quantum discord from the magnetic susceptibility data for iron nitrosyl complexes $mathrm{ Fe_2(SC_3 H_5N_2)_2(NO)_4}$ and binuclear Cu(II) acetate complex $mathrm{[Cu_2 L(OAc)]cdot 6 H_2O}$, where $mathrm{ L}$ is a ligand that allows us to compare the super-quantum discord with the standard one. The dependence of the super-quantum discord on the parameter describing weak measurements is studied. Obtained difference between super-quantum and quantum discords confirms the detection of additional quantum correlations that are usually destroyed during projective measurements. The use of the approach allows to predict quantitatively in advance the advantages of use of weak measurements versus projective one for quantum technologies in real settings where quantum discord is used as resource. This can be relevant particularly in macroscopic quantum systems where weak measurements can be used to extract information about the system.
Weak measurement is a new way to manipulate and control quantum systems. Different from projection measurement, weak measurement only makes a small change in status. Applying weak measurement to quantum discord, Singh and Pati proposed a new kind of quantum correlations called super quantum discord (SQD) [Annals of Physics textbf{343},141(2014)]. Unfortunately, the super quantum discord is also difficult to calculate. There are only few explicit formulae about SQD. We derive an analytical formulae of SQD for general X-type two-qubit states, which surpass the conclusion for Werner states and Bell diagonal states. Furthermore, our results reveal more knowledge about the new insight of quantum correlation and give a new way to compare SQD with normal quantum discord. Finally, we analyze its dynamics under nondissipative channels.
As we begin to reach the limits of classical computing, quantum computing has emerged as a technology that has captured the imagination of the scientific world. While for many years, the ability to execute quantum algorithms was only a theoretical possibility, recent advances in hardware mean that quantum computing devices now exist that can carry out quantum computation on a limited scale. Thus it is now a real possibility, and of central importance at this time, to assess the potential impact of quantum computers on real problems of interest. One of the earliest and most compelling applications for quantum computers is Feynmans idea of simulating quantum systems with many degrees of freedom. Such systems are found across chemistry, physics, and materials science. The particular way in which quantum computing extends classical computing means that one cannot expect arbitrary simulations to be sped up by a quantum computer, thus one must carefully identify areas where quantum advantage may be achieved. In this review, we briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer. We then take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contribution, we experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord. We certify the presence of such quantum correlations via negativities in the regularized two-mode Glauber-Sudarshan function. Our data show compatibility with an incoherent mixture of orthonormal photon-number states, ruling out quantum coherence and other kinds of quantum resources. By construction, the quantumness of our state is robust against dephasing, thus requiring fewer experimental resources to ensure stability. In addition, we theoretically show how multimode entanglement can be activated based on the generated, nonentangled state. Therefore, we implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.