Do you want to publish a course? Click here

Happy Birthday, Ultra-Cold Neutron!

187   0   0.0 ( 0 )
 Added by Hartmut Abele
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

What is driving the accelerated expansion of the universe and do we have an alternative for Einsteins cosmological constant? What is dark matter made of? Do extra dimensions of space and time exist? Is there a preferred frame in the universe? To which extent is left-handedness a preferred symmetry in nature? Whats the origin of the baryon asymmetry in the universe? These fundamental and open questions are addressed by precision experiments using ultra-cold neutrons. This year, we celebrate the 50th anniversary of their first production, followed by first pioneering experiments. Actually, ultra-cold neutrons were discovered twice in the same year, once in the eastern and once in the western world. For five decades now research projects with ultra-cold neutrons have contributed to the determination of the force constants of natures fundamental interactions, and several technological breakthroughs in precision allow to address the open questions by putting them to experimental test. To mark the event and tribute to this fabulous object, we present a birthday song for ultra-cold neutrons with acoustic resonant transitions, which are based solely on properties of ultra-cold neutrons, the inertial and gravitational mass of the neutron, Plancks constant, and the local gravity. We make use of a musical intonation system that bears no relation to basic notation and basic musical theory as applied and used elsewhere but addresses two fundamental problems of music theory, the problem of reference for the concert pitch and the problem of intonation.



rate research

Read More

130 - A. Cucchiara , P. Veres , A. Corsi 2015
We present our extensive observational campaign on the Swift-discovered GRB141121A, al- most ten years after its launch. Our observations covers radio through X-rays, and extends for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is E{gamma},iso = 8.0x10^52 erg. Due to the long prompt duration, GRB141121A falls into the recently discovered class of UL-GRBs. Peculiar features of this burst are a flat early-time optical light curve and a radio-to-X-ray rebrightening around 3 days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward-reverse shock (FS,RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ~3 d) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful GRB explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.
This work presents selected results from the first round of the DFG Priority Programme SPP 1491 precision experiments in particle and astroparticle physics with cold and ultra-cold neutrons.
We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the RB drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron $beta$-decay. We aim for a precision on the 10$^{-4}$ level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newtons gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.
125 - Kent Leung , Oliver Zimmer 2009
The current knowledge of the neutron $beta$-decay lifetime has come under scrutiny as of late due to large disagreements between recent precise measurements. Measurements using magnetically trapped Ultra-Cold Neutrons (UCNs) offer the possibility of storage without spurious losses which can provide a reliable value for the neutron lifetime. The progress towards realizing a neutron lifetime measurement using a Ioffe-type trap made with a Halbach-type permanent octupole magnet is presented here. The experimental procedure extracts a gas of UCNs into vacuum, which reduces many known channels of neutron losses, and detects the neutron decays via in-situ detection of the produced protons.
Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا