Do you want to publish a course? Click here

A Simplified Approach to Simulating Raman Spectra from Ab Initio Molecular Dynamics

91   0   0.0 ( 0 )
 Added by Patrick El-Khoury
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simplified approach to simulating Raman spectra using ab initio molecular dynamics (AIMD) calculations. Our protocol relies on on-the-fly calculations of approximate molecular polarizabilities using a sum over orbitals (as opposed to states) method.



rate research

Read More

Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a quantum computer-based AIMD method is presented. The electronic energies are calculated on a quantum computer using the variational quantum eigensolver (VQE) method. We compute the energy gradients numerically using the Hellmann-Feynman theorem, finite differences, and a correlated sampling technique. Our method only requires additional classical calculations of electron integrals for each degree of freedom, without any additional computations on a quantum computer beyond the initial VQE run. To achieve comparable accuracy, our gradient calculation method requires three to five orders of magnitude fewer measurements than other brute force methods without correlated sampling. As a proof of concept, AIMD dynamics simulations are demonstrated for the H2 molecule on IBM quantum devices. To the best of our knowledge, it is the first successful attempt to run AIMD on quantum devices for a chemical system. In addition, we demonstrate the validity of the method for larger molecules using full configuration interaction (FCI) wave functions. As quantum hardware and noise mitigation techniques continue to improve, the method can be utilized for studying larger molecular and material systems.
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and the triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (so-called the gamma correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted gamma-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
We analyze how to obtain non-resonant and resonant Raman spectra within the Placzek as well as the Albrecht approximation. Both approximations are derived from the matrix element for light scattering by application of the Kramers, Heisenberg and Dirac formula. It is shown that the Placzek expression results from a semi-classical approximation of the combined electronic and vibrational transition energies. Molecular hydrogen, water and butadiene are studied as test cases. It turns out that the Placzek approximation agrees qualitatively with the more accurate Albrecht formulation even in the resonant regime for the excitations of single vibrational quanta. However, multiple vibrational excitations are absent in Placzek, but can be of similar intensities as single excitations under resonance conditions. The Albrecht approximation takes multiple vibrational excitations into account and the resulting simulated spectra exhibit good agreement with experimental Raman spectra in the resonance region as well.
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
Strong magnetic fields have a large impact on the dynamics of molecules. In addition to the changes of the electronic structure, the nuclei are exposed to the Lorentz force with the magnetic field being screened by the electrons. In this work, we explore these effects using ab-initio molecular dynamics simulations based on an effective Hamiltonian calculated at the Hartree-Fock level of theory. To correctly include these non-conservative forces in the dynamics, we have designed a series of novel propagators that show both good efficiency and stability in test cases. As a first application, we analyze simulations of He and H$_2$ at two field strengths characteristic of magnetic white dwarfs (0.1 $B_0 = 2.35 times 10^4$ T and $B_0 = 2.35 times 10^5$ T). While the He simulations clearly demonstrate the importance of electron screening of the Lorentz force in the dynamics, the extracted rovibrational spectra of H$_2$ reveal a number of fascinating features not observed in the field-free case: couplings of rotations/vibrations with the cyclotron rotation, overtones with unusual selection rules, and hindered rotations that transmute into librations with increasing field strength. We conclude that our presented framework is a powerful tool to investigate molecules in these extreme environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا