No Arabic abstract
Diffusion of heat in metals is a fundamental process which is crucial for a variety of applications of metal nanostructures. Surprisingly, however, {em ultrafast} heat diffusion received only limited attention so far. Here, we show that heat diffusion can be made faster than $e-ph$ energy transfer rate, in which case, it dominates the spatio-temporal dynamics of the temperature. This enables the metals to overcome the conventional limitations of the nonlinear optical response of materials - it can be simultaneously fast and strong. As a specific example, we identify the underlying (femtosecond and few picosecond) time scales responsible for the generation and erasure of optically-induced transient Bragg gratings in thin metal films. Further, we show that heat diffusion gives rise to a significant nonlocal thermo-optic nonlinearity - it affects also the nonlinear optical response such that the overall change of the permittivity (hence, reflectivity of the transient grating) has a significant dependence also on the illumination period rather than only on the illumination intensity.
Normal galaxies observed at z>6, when the Universe was <1 billion years old, thus far show no evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is 1%. A prototypical example is Himiko (z=6.6), which a mere 840 Myr after the Big Bang is forming stars at a rate of 30-100 Msun/yr, yielding a mass assembly time M^{star}/SFR 150x10^6 yr. Himiko is estimated to have a low fraction (2-3% of the Solar value) of elements heavier than helium (metallicity), and although its gas mass cannot be asserted at this time its dust-to-stellar mass ratio is constrained to be <0.05%. The local galaxy I Zw 18, with a metallicity 4% solar and forming stars less rapidly than Himiko but still vigorously for its mass (M^{star}/SFR 1.6x10^9 yr), is also very dust deficient and perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18 from which we determine its dust mass to be 450-1800 Msun, yielding a dust-to-stellar mass ratio approx 10^{-6}-10^{-5} and a dust-to-gas mass ratio 3.2-13x10^{-6}. If I Zw 18 is a reasonable analog of Himiko, then Himikos dust mass is approx 50,000 Msun, a factor of 100 below the current upper limit. These numbers are considerably uncertain, but if most high-z galaxies are more like Himiko than like the quasar host SDSS J114816.64+525150.3, then the prospects for detecting the gas and dust in them are much poorer than hitherto anticipated.
Modern nonlinear optical materials allow light of one wavelength be efficiently converted into light at another wavelength. However, designing nonlinear optical materials to operate with ultrashort pulses is difficult, because it is necessary to match both the phase velocities and group velocities of the light. Here we show that self-organized nonlinear gratings can be formed with femtosecond pulses propagating through nanophotonic waveguides, providing simultaneous group-velocity matching and quasi-phase-matching for second harmonic generation. We record the first direct microscopy images of photo-induced nonlinear gratings, and demonstrate how these waveguides enable simultaneous $chi^{(2)}$ and $chi^{(3)}$ nonlinear processes, which we utilize to stabilize a laser frequency comb. Finally, we derive the equations that govern self-organized grating formation for femtosecond pulses and explain the crucial role of group-velocity matching. In the future, such nanophotonic waveguides could enable scalable, reconfigurable nonlinear optical systems.
The $rmLambda$CDM cosmological model is remarkable: with just 6 parameters it describes the evolution of the Universe from a very early time when all structures were quantum fluctuations on subatomic scales to the present, and it is consistent with a wealth of high-precision data, both laboratory measurements and astronomical observations. However, the foundation of $rmLambda$CDM involves physics beyond the standard model of particle physics: particle dark matter, dark energy and cosmic inflation. Until this `new physics is clarified, $rmLambda$CDM is at best incomplete and at worst a phenomenological construct that accommodates the data. I discuss the path forward, which involves both discovery and disruption, some grand challenges and finally the limits of scientific cosmology.
Laser cooling of a solid is achieved when a coherent laser illuminates the material, and the heat is extracted by resulting anti-Stokes fluorescence. Over the past year, net solid-state laser cooling was successfully demonstrated for the first time in Yb-doped silica glass in both bulk samples and fibers. Here, we improve the previously published results by one order of magnitude and report more than 6K of cooling below the ambient temperature. This result is the lowest temperature achieved in solid-state laser cooling of silica glass to date to the best of our knowledge. We present details on the experiment performed using a 20W laser operating at 1035nm wavelength and temperature measurements using both a thermal camera and the differential luminescence thermometry technique.
The temperature evolution of GdFeCo electrons following optical heating plays a key role in all optical switching of GdFeCo and is primarily governed by the strength of coupling between electrons and phonons. Typically, the strength of electron-phonon coupling in a metal is deduced by monitoring changes in reflectance following optical heating and then analyzing the transient reflectance with a simple two-temperature thermal model. In a magnetic metal, the change in reflectance cannot be assumed to depend only the electron and phonon temperatures because a metals reflectance also depends on the magnetization. To deduce the electron-phonon coupling constant in GdFeCo, we analyze thermal transport in Au and GdFeCo bilayers following optical heating of the GdFeCo electrons. We use the reflectance of the Au layer to monitor the temperature evolution of the Au phonons. By interpreting the response of the bilayer to heating with a thermal model, we determine the electron-phonon coupling constant in GdFeCo to be 6 x 10^17 W/(m^3-K) corresponding to an electron-phonon relaxation time in GdFeCo of ~150 fs.