We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [PRB 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the solution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a natural impurity orbital basis set. The later is solved by DMRG in combination with a restricted-active-space truncation scheme. The method allows one to compute Greens functions directly on the real frequency or time axis. We critically test the convergence of the truncation scheme using a one-band Hubbard model solved in the dynamical mean-field theory. The projection is exact in the limit of both infinitely large and small Coulomb interactions. For all parameter ranges the accuracy of the projected solution converges exponentially to the exact solution with increasing subsystem size.
We investigate the performance of Greens function coupled cluster singles and doubles (CCSD) method as a solver for Greens function embedding methods. To develop an efficient CC solver, we construct the one-particle Greens function from the coupled cluster (CC) wave function based on a non-hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points. We have tested the applicability of the CC Greens function solver in the weakly to strongly correlated regimes by employing it for a half-filled 1D Hubbard model projected onto a single site impurity problem and a half-filled 2D Hubbard model projected onto a 4-site impurity problem. For the 1D Hubbard model, for all interaction strengths, we observe an excellent agreement with the full configuration interaction (FCI) technique, both for the self-energy and spectral function. For the 2D Hubbard, we have employed an open-shell version of the current implementation and observed some discrepancies from FCI in the strongly correlated regime. Finally, on an example of a small ammonia cluster, we analyze the performance of the Greens function CCSD solver within the self-energy embedding theory (SEET) with Hartee-Fock (HF) and Greens function second order (GF2) for the treatment of the environment.
We extend the natural orbital impurity solver [PRB 90, 085102 (2014)] to finite temperatures within the dynamical mean field theory and apply it to calculate transport properties of correlated electrons. First, we benchmark our method against the exact diagonalization result for small clusters, finding that the natural orbital scheme works well not only for zero temperature but for low finite temperatures. The method yields smooth and sufficiently accurate spectra, which agree well with the results of the numerical renormalization group. Using the smooth spectra, we calculate the electric conductivity and Seebeck coefficient for the two-dimensional Hubbard model at low temperatures which are in the scope of many experiments and practical applications. These results demonstrate the usefulness of the natural orbital framework for obtaining the real frequency information within the dynamical mean field theory.
A fast impurity solver for the dynamical mean field theory(DMFT) named Two Mode Approxi- mation (TMA) is proposed based on the Gutzwiller variational approach, which captures the main features of both the coherent and incoherent motion of the electrons. The new solver works with real frequency at zero temperature and it provides directly the spectral function of the electrons. It can be easily generalized to multi-orbital impurity problems with general on-site interactions, which makes it very useful in LDA+DMFT. Benchmarks on one and two band Hubbard models are presented, and the results agree well with those of Exact Diagonalization (ED).
We present a very efficient solver for the general Anderson impurity problem. It is based on the perturbation around a solution obtained from exact diagonalization using a small number of bath sites. We formulate a perturbation theory which is valid for both weak and strong coupling and interpolates between these limits. Good agreement with numerically exact quantum Monte-Carlo results is found for a single bath site over a wide range of parameters. In particular, the Kondo resonance in the intermediate coupling regime is well reproduced for a single bath site and the lowest order correction. The method is particularly suited for low temperatures and alleviates analytical continuation of imaginary time data due to the absence of statistical noise compared to quantum Monte-Carlo impurity solvers.
We present an implementation of the hybridization expansion impurity solver which employs sparse matrix exact-diagonalization techniques to compute the time evolution of the local Hamiltonian. This method avoids computationally expensive matrix-matrix multiplications and becomes advantageous over the conventional implementation for models with 5 or more orbitals. In particular, this method will allow the systematic investigation of 7-orbital systems (lanthanide and actinide compounds) within single-site dynamical mean field theory. We illustrate the power and usefulness of our approach with dynamical mean field results for a 5-orbital model which captures some aspects of the physics of the iron based superconductors.