No Arabic abstract
The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that the numerical renormalization group is a viable tool to monitor this crossover in a real-materials setting. The renormalization group flow from high to arbitrarily small energy scales clearly reveals the emergence of the Fermi-liquid state of Sr$_2$RuO$_4$. We find a two-stage screening process, where orbital fluctuations are screened at much higher energies than spin fluctuations, and Fermi-liquid behavior, concomitant with spin coherence, below a temperature of 25 K. By computing real-frequency correlation functions, we directly observe this spin--orbital scale separation and show that the van Hove singularity drives strong orbital differentiation. We extract quasiparticle interaction parameters from the low-energy spectrum and find an effective attraction in the spin-triplet sector.
The strange metal is an enigmatic phase whose properties are irreconcilable with the established Fermi liquid theory of conductors. A fundamental question is whether a strange metal and a Fermi liquid are distinct phases of matter, or whether a material can be intermediate between or in a superposition of the two. We studied the collective density response of the correlated metal Sr$_2$RuO$_4$ by momentum-resolved electron energy-loss spectroscopy (M-EELS). We discovered that a broad continuum of non-propagating charge fluctuations (a characteristic of strange metals) and also a dispersing Fermi liquid-like collective mode at low energies and long wavelengths coexist in the same material at the same temperature. These features exhibit a spectral weight redistribution and velocity renormalization when we cool the material through the quasiparticle coherence temperature. Our results show not only that strange metal and Fermi liquid phenomena can coexist but also that Sr$_2$RuO$_4$ serves as an ideal test case for studying the interaction between the two.
We report a polarization-resolved Raman spectroscopy study of the orbital dependence of the quasiparticles properties in the prototypical multi-band Fermi liquid Srtextsubscript{2}RuOtextsubscript{4}. We show that the quasiparticle scattering rate displays $omega^{2}$ dependence as expected for a Fermi liquid. Besides, we observe a clear polarization-dependence in the energy and temperature dependence of the quasiparticle scattering rate and mass, with the $d_{xz/yz}$ orbital derived quasiparticles showing significantly more robust Fermi liquid properties than the $d_{xy}$ orbital derived ones. The observed orbital dichotomy of the quasiparticles is consistent with the picture of Srtextsubscript{2}RuOtextsubscript{4} as a Hunds metal. Our study establishes Raman scattering as a powerful probe of Fermi liquid properties in correlated metals.
We report optical measurements demonstrating that the low-energy relaxation rate ($1/tau$) of the conduction electrons in Sr$_2$RuO$_4$ obeys scaling relations for its frequency ($omega$) and temperature ($T$) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, $1/taupropto (hbaromega)^2 + (ppikB T)^2$ with $p=2$, and $omega/T$ scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling, and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing resilient quasiparticle excitations above the Fermi energy.
We present a comprehensive angle-resolved photoemission spectroscopy study of Ca$_{1.8}$Sr$_{0.2}$RuO$_4$. Four distinct bands are revealed and along the Ru-O bond direction their orbital characters are identified through a light polarization analysis and comparison to dynamical mean-field theory calculations. Bands assigned to $d_{xz}, d_{yz}$ orbitals display Fermi liquid behavior with fourfold quasiparticle mass renormalization. Extremely heavy fermions - associated with a predominantly $d_{xy}$ band character - are shown to display non-Fermi-liquid behavior. We thus demonstrate that Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ is a hybrid metal with an orbitally selective Fermi liquid quasiparticle breakdown.
We discovered a fractional Chern structure in chiral superconducting Sr$_2$RuO$_4$ nanofilms by employing electric transport. By using Sr$_2$RuO$_4$ single crystals with nanoscale thickness, a fractional Hall conductance was observed without an external magnetic field. The Sr$_2$RuO$_4$ nanofilms enhanced the superconducting transition temperature to about 3 K. We found an anomalous induced voltage with temperature and thickness dependence, and the switching behavior of the induced voltage appeared when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle $theta=pi/6$ is determined by observing the topological magneto-electric effect in Sr$_2$RuO$_4$ nanofilms.