Do you want to publish a course? Click here

Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems

54   0   0.0 ( 0 )
 Added by Nicolas Augier
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study one-parametric perturbations of finite dimensional real Hamiltonians depending on two controls, and we show that generically in the space of Hamiltonians, conical intersections of eigenvalues can degenerate into semi-conical intersections of eigenvalues. Then, through the use of normal forms, we study the problem of ensemble controllability between the eigenstates of a generic Hamiltonian.



rate research

Read More

Let $sqrt{N}+lambda_{max}$ be the largest real eigenvalue of a random $Ntimes N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix). We study the large deviations behaviour of the limiting $Nrightarrow infty$ distribution $P[lambda_{max}<t]$ of the shifted maximal real eigenvalue $lambda_{max}$. In particular, we prove that the right tail of this distribution is Gaussian: for $t>0$, [ P[lambda_{max}<t]=1-frac{1}{4}mbox{erfc}(t)+Oleft(e^{-2t^2}right). ] This is a rigorous confirmation of the corresponding result of Forrester and Nagao. We also prove that the left tail is exponential: for $t<0$, [ P[lambda_{max}<t]= e^{frac{1}{2sqrt{2pi}}zetaleft(frac{3}{2}right)t+O(1)}, ] where $zeta$ is the Riemann zeta-function. Our results have implications for interacting particle systems. The edge scaling limit of the law of real eigenvalues for the real Ginibre ensemble is a rescaling of a fixed time distribution of annihilating Brownian motions (ABMs) with the step initial condition. Therefore, the tail behaviour of the distribution of $X_s^{(max)}$ - the position of the rightmost annihilating particle at fixed time $s>0$ - can be read off from the corresponding answers for $lambda_{max}$ using $X_s^{(max)}stackrel{D}{=} sqrt{4s}lambda_{max}$.
In this article we discuss which controllability properties of classical Hamiltonian systems are preserved after quantization. We discuss some necessary and some sufficient conditions for small-time controllability of classical systems and quantum systems using the WKB method. In particular, we investigate the conjecture that if the classical system is not small-time controllable, then the corresponding quantum system is not small-time controllable either.
A new class of cost functionals for optimal control of quantum systems which produces controls which are sparse in frequency and smooth in time is proposed. This is achieved by penalizing a suitable time-frequency representation of the control field, rather than the control field itself, and by employing norms which are of $L^1$ or measure form with respect to frequency but smooth with respect to time. We prove existence of optimal controls for the resulting nonsmooth optimization problem, derive necessary optimality conditions, and rigorously establish the frequency-sparsity of the optimizers. More precisely, we show that the time-frequency representation of the control field, which a priori admits a continuum of frequencies, is supported on only textit{ finitely many} frequencies. These results cover important systems of physical interest, including (infinite-dimensional) Schrodinger dynamics on multiple potential energy surfaces as arising in laser control of chemical reactions. Numerical simulations confirm that the optimal controls, unlike those obtained with the usual $L^2$ costs, concentrate on just a few frequencies, even in the infinite-dimensional case of laser-controlled chemical reactions.
In this paper we study the internal exact controllability for a second order linear evolution equation defined in a two-component domain. On the interface we prescribe a jump of the solution proportional to the conormal derivatives, meanwhile a homogeneous Dirichlet condition is imposed on the exterior boundary. Due to the geometry of the domain, we apply controls through two regions which are neighborhoods of a part of the external boundary and of the whole interface, respectively. Our approach to internal exact controllability consists in proving an observability inequality by using the Lagrange multipliers method. Eventually we apply the Hilbert Uniqueness Method, introduced by J.-L. Lions, which leads to the construction of the exact control through the solution of an adjoint problem. Finally we find a lower bound for the control time depending not only on the geometry of our domain and on the matrix of coefficients of our problem but also on the coefficient of proportionality of the jump with respect to the conormal derivatives.
The conical function and its relativistic generalization can be viewed as eigenfunctions of the reduced 2-particle Hamiltonians of the hyperbolic Calogero-Moser system and its relativistic generalization. We prove new product formulas for these functions. As a consequence, we arrive at explicit diagonalizations of integral operators that commute with the 2-particle Hamiltonians and reduc
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا