In this paper, we discuss the compatibility between the rotating-wave and the adiabatic approximations for controlled quantum systems. Although the paper focuses on applications to two-level quantum systems, the main results apply in higher dimension. Under some suitable hypotheses on the time scales, the two approximations can be combined. As a natural consequence of this, it is possible to design control laws achieving transitions of states between two energy levels of the Hamiltonian that are robust with respect to inhomogeneities of the amplitude of the control input.