Do you want to publish a course? Click here

Non-Gaussian Normal Diffusion in a Fluctuating Corrugated Channel

60   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Brownian particle floating in a narrow corrugated (sinusoidal) channel with fluctuating cross section exhibits non-Gaussian normal diffusion. Its displacements are distributed according to a Gaussian law for very short and asymptotically large observation times, whereas a robust exponential distribution emerges for intermediate observation times of the order of the channel fluctuation correlation time. For intermediate to large observation times the particle undergoes normal diffusion with one and the same effective diffusion constant. These results are analytically interpreted without having recourse to heuristic assumptions. Such a simple model thus reproduces recent experimental and numerical observations obtained by investigating complex biophysical systems.



rate research

Read More

188 - Sumiyoshi Abe 2020
A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time scales, a set of three equations are derived for the fast degree of freedom, the slow degree of freedom and the coupling between these two hierarchies. It is shown that this approach consistently describes diffusing diffusivity and non-Gaussian normal diffusion.
Recent theoretical modeling offers a unified picture for the description of stochastic processes characterized by a crossover from anomalous to normal behavior. This is particularly welcome, as a growing number of experiments suggest the crossover to be a common feature shared by many systems: in some cases the anomalous part of the dynamics amounts to a Brownian yet non-Gaussian diffusion; more generally, both the diffusion exponent and the distribution may deviate from normal behavior in the initial part of the process. Since proposed theories work at a mesoscopic scale invoking the subordination of diffusivities, it is of primary importance to bridge these representations with a more fundamental, ``microscopic description. We argue that the dynamical behavior of macromolecules during simple polymerization processes provide suitable setups in which analytic, numerical, and particle-tracking experiments can be contrasted at such a scope. Specifically, we demonstrate that Brownian yet non-Gaussian diffusion of the center of mass of a polymer is a direct consequence of the polymerization process. Through the kurtosis, we characterize the early-stage non-Gaussian behavior within a phase diagram, and we also put forward an estimation for the crossover time to ordinary Brownian motion.
We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particles motion in a random landscape of diffusion coefficients slowly varying in space. Our conclusion is that such behavior is extremely unlikely in the situations when the particles, introduced into the system at random at $t=0$, are observed from the preparation of the system on. However, it indeed may arise in the case when the diffusion (as described in Ito interpretation) is observed under equilibrated conditions. This paradigmatic situation can be translated into the model of the diffusion coefficient fluctuating in time along a trajectory, i.e. into a kind of the diffusing diffusivity model.
185 - Ellak Somfai 2003
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in the radial case. The average cluster, defined as the average conformal map, is similar but not identical to Saffman-Taylor fingers.
106 - R.Klages 2018
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional periodic Lorentz gas are replaced by soft repulsive scatterers. A thorough computational analysis yields both normal and anomalous (super) diffusion with an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose existence is characterized by tongue-like structures in parameter space. These results hold even for small softness showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا