Do you want to publish a course? Click here

Connectedness and irreducibility of compact quantum groups

211   0   0.0 ( 0 )
 Added by Stefano Rossi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We show that a natural notion of irreducibility implies connectedness in the Compact Quantum Group setting. We also investigate the converse implication and show it is related to Kaplanskys conjectures on group algebras.



rate research

Read More

87 - Daniel Gromada 2020
We study glued tensor and free products of compact matrix quantum groups with cyclic groups -- so-called tensor and free complexifications. We characterize them by studying their representation categories and algebraic relations. In addition, we generalize the concepts of global colourization and alternating colourings from easy quantum groups to arbitrary compact matrix quantum groups. Those concepts are closely related to tensor and free complexification procedures. Finally, we also study a more general procedure of gluing and ungluing.
We introduce the notion of identity component of a compact quantum group and that of total disconnectedness. As a drawback of the generalized Burnside problem, we note that totally disconnected compact matrix quantum groups may fail to be profinite. We consider the problem of approximating the identity component as well as the maximal normal (in the sense of Wang) connected subgroup by introducing canonical, but possibly transfinite, sequences of subgroups. These sequences have a trivial behaviour in the classical case. We give examples, arising as free products, where the identity component is not normal and the associated sequence has length 1. We give necessary and sufficient conditions for normality of the identity component and finiteness or profiniteness of the quantum component group. Among them, we introduce an ascending chain condition on the representation ring, called Lie property, which characterizes Lie groups in the commutative case and reduces to group Noetherianity of the dual in the cocommutative case. It is weaker than ring Noetherianity but ensures existence of a generating representation. The Lie property and ring Noetherianity are inherited by quotient quantum groups. We show that A_u(F) is not of Lie type. We discuss an example arising from the compact real form of U_q(sl_2) for q<0.
There are two very natural products of compact matrix quantum groups: the tensor product $Gtimes H$ and the free product $G*H$. We define a number of further products interpolating these two. We focus more in detail to the case where $G$ is an easy quantum group and $H=hat{mathbb{Z}}_2$, the dual of the cyclic group of order two. We study subgroups of $G*hat{mathbb{Z}}_2$ using categories of partitions with extra singletons. Closely related are many examples of non-easy bistochastic quantum groups.
237 - Debashish Goswami 2011
Let $G$ be one of the classical compact, simple, centre-less, connected Lie groups or rank $n$ with a maximal torus $T$, the Lie algebra $clg$ and let ${ E_i, F_i, H_i, i=1, ldots, n }$ be the standard set of generators corresponding to a basis of the root system. Consider the adjoint-orbit space $M={ {rm Ad}_g(H_1),~g in G }$, identified with the homogeneous space $G/L$ where $L={ g in G:~{rm Ad}_g(H_1)=H_1}$. We prove that the `coordinate functions ${ f_i, i=1, ldots, n }$, (where $f_i(g):=lambda_i({rm Ad}_g(H_1))$, ${ lambda_1, ldots, lambda_n}$ is basis of $clg^prime$) are `quadratically independent in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithtully on $C(M)$ such that the action leaves invariant the linear span of the above cordinate functions. As a corollary, it is also shown that any compact quantum group having a faithful action on the noncommutative manifold obtained by Rieffel deformation of $M$ satisfying a similar `linearity condition must be a Rieffel-Wang type deformation of some compact group.
Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient conditions for irreducibility of tensor products of such evaluation modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا