We prove a sharp analogue of Minkowskis inhomogeneous approximation theorem over fields of power series $mathbb{F}_q((T^{-1}))$. Furthermore, we study the approximation to a given point $underline{y}$ in $mathbb{F}_q((T^{-1}))^2$ by the $SL_2(mathbb{F}_q[T])$-orbit of a given point $underline{x}$ in $mathbb{F}_q((T^{-1}))^2$.