This work reports the first observation of azimuthal asymmetries around the thrust axis in $e^+e^-$ annihilation of pairs of back-to-back charged pions in one hemisphere, and $pi^0$ and $eta$ mesons in the opposite hemisphere. These results are complemented by a new analysis of pairs of back-to-back charged pions. The $pi^0$ and $eta$ asymmetries rise with the relative momentum $z$ of the detected hadrons as well as with the transverse momentum with respect to the thrust axis. These asymmetries are sensitive to the Collins fragmentation function $H_1^{perp}$ and provide complementary information to previous measurements with charged pions and kaons in the final state. In particular, the $eta$ final states will provide additional information on the flavor structure of $H_1^{perp}$. This is the first measurement of the explicit transverse-momentum dependence of the Collins fragmentation function from Belle data. It uses a dataset of 980.4~fb$^{-1}$ collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV.
A search for $CP$ violation in $D^{pm}rightarrow eta^{prime} pi^{pm}$ and $D^{pm}_{s}rightarrow eta^{prime} pi^{pm}$ decays is performed using proton-proton collision data, corresponding to an integrated luminosity of $3$ fb$^{-1}$, recorded by the LHCb experiment at centre-of-mass energies of $7$ and $8$ TeV. The measured $CP$-violating charge asymmetries are $A_{CP}(D^{pm} rightarrow eta^{prime} pi^{pm})=(-0.61pm 0.72 pm 0.53 pm 0.12)%$ and $A_{CP}(D^{pm}_{s}rightarrow eta^{prime} pi^{pm})=(-0.82pm 0.36 pm 0.22 pm 0.27)%$, where the first uncertainties are statistical, the second systematic, and the third are the uncertainties on the $A_{CP}(D^{pm} rightarrow K^0_S pi^{pm})$ and $A_{CP}(D^{pm}_{s}rightarrow phi pi^{pm})$ measurements used for calibration. The results represent the most precise measurements of these asymmetries to date.
Using $5.2 mathrm{fb}^{-1}$ $e^+ e^-$ annihilation data samples collected with the BESIII detector, we measure the cross sections of $e^+e^- to K_S^0 K^pm pi^mp pi^0$ and $K_{S}^{0}K^{pm}pi^{mp}eta$ at center-of-mass energies from $3.90$ to $4.60$ GeV. In addition, we search for the charmonium-like resonance $Y(4260)$ decays into $K_{S}^{0}K^{pm}pi^{mp}pi^0$ and $K_{S}^{0}K^{pm}pi^{mp}eta$, and $Z_c^{0,pm}(3900)$ decays into $K_{S}^{0}K^{pm}pi^{mp,0}$ and $K_{S}^{0}K^{pm}eta$. Corresponding upper limits are provided since no clear signal is observed.
We study the processes $e^+ e^-to 2(pi^+pi^-)pi^0gamma$, $2(pi^+pi^-)etagamma$, $K^+ K^-pi^+pi^-pi^0gamma$ and $K^+ K^-pi^+pi^-etagamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct epem measurements, currently available only for the $etapi^+pi^-$ and $omegapi^+pi^-$ submodes of the $e^+ e^-to 2(pi^+pi^-)pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-toomega(782)pi^+pi^-$ and study the $omega(1420)$ and $omega(1650)$ resonances. In the charmonium region, we observe the $J/psi$ in all these final states and several intermediate states, as well as the $psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Based on a sample of 225.3 million J/psi events accumulated with the BESIII detector at the BEPCII, the decays of eta to pi+pi-l+l- are studied via J/psi to gammaeta. A clear eta signal is observed in the pi+pi-e+e- mass spectrum, and the branching fraction is measured to be BR(eta to pi+pi-e+e-) = (2.11pm0.12 (stat.)pm0.15 (syst.))times10^{-3}, which is in good agreement with theoretical predictions and the previous measurement, but is determined with much higher precision. No eta signal is found in the pi+ pi- mu+ mu- mass spectrum, and the upper limit is determined to be BR(eta to pi+ pi- mu+ mu-)<2.9times10^{-5} at the 90% confidence level.
Amplitude models are constructed to describe the resonance structure of ${D^{0}to K^{-}pi^{+}pi^{+}pi^{-}}$ and ${D^{0} to K^{+}pi^{-}pi^{-}pi^{+}}$ decays using $pp$ collision data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb experiment, corresponding to an integrated luminosity of $3.0mathrm{fb}^{-1}$. The largest contributions to both decay amplitudes are found to come from axial resonances, with decay modes $D^{0} to a_1(1260)^{+} K^{-}$ and $D^{0} to K_1(1270/1400)^{+} pi^{-}$ being prominent in ${D^{0}to K^{-}pi^{+}pi^{+}pi^{-}}$ and $D^{0}to K^{+}pi^{-}pi^{-}pi^{+}$, respectively. Precise measurements of the lineshape parameters and couplings of the $a_1(1260)^{+}$, $K_1(1270)^{-}$ and $K(1460)^{-}$ resonances are made, and a quasi model-independent study of the $K(1460)^{-}$ resonance is performed. The coherence factor of the decays is calculated from the amplitude models to be $R_{K3pi} = 0.459pm 0.010,(mathrm{stat}) pm 0.012,(mathrm{syst}) pm 0.020,(mathrm{model})$, which is consistent with direct measurements. These models will be useful in future measurements of the unitary-triangle angle $gamma$ and studies of charm mixing and $C!P$ violation.
Belle Collaboration: H. Li
,A. Vossen
,H. Aihara
.
(2019)
.
"Azimuthal asymmetries of back-to-back $pi^pm-(pi^0,eta,pi^pm)$ pairs in $e^+e^-$ annihilation"
.
Anselm Vossen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا