Do you want to publish a course? Click here

hi_class: Background Evolution, Initial Conditions and Approximation Schemes

133   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological datasets have great potential to elucidate the nature of dark energy and test gravity on the largest scales available to observation. Theoretical predictions can be computed with hi_class (www.hiclass-code.net), an accurate, fast and flexible code for linear cosmology, incorporating a wide range of dark energy theories and modifications to general relativity. We introduce three new functionalities into hi_class: (1) Support for models based on covariant Lagrangians, including a constraint-preserving integration scheme for the background evolution and a series of worked-out examples: Galileon, nKGB, quintessence (monomial, tracker) and Brans-Dicke. (2) Consistent initial conditions for the scalar-field perturbations in the deep radiation era, identifying the conditions under which modified-gravity isocurvature perturbations may grow faster than adiabatic modes leading to a loss of predictivity. (3) An automated quasistatic approximation scheme allowing order-of-magnitude improvement in computing performance without sacrificing accuracy for wide classes of models. These enhancements bring the treatment of dark energy and modified gravity models to the level of detail comparable to software tools restricted to standard $Lambda$CDM cosmologies. The hi_class code is publicly available (https://github.com/miguelzuma/hi_class_public), ready to explore current data and prepare for next-generation experiments.



rate research

Read More

We study initial conditions for inflation in scenarios where the inflaton potential has a plateau shape. Such models are those most favored by Planck data and can be obtained in a large number of model classes. As a representative example, we consider Higgs inflation with and without an $R^2$ term in the context of Palatini gravity. We show that inflation with a large number of e-folds generically occurs in a large part of the parameter space without any fine-tuning of parameters even when the scale of inflation and the inflaton field value during inflation are much smaller than the Planck scale. We discuss consequences for detection of primordial gravitational waves and spectral tilt of curvature perturbations, as well as the recently proposed Trans-Planckian Censorship conjecture.
We present the public version of hi_class (www.hiclass-code.net), an extension of the Boltzmann code CLASS to a broad ensemble of modifications to general relativity. In particular, hi_class can calculate predictions for models based on Horndeskis theory, which is the most general scalar-tensor theory described by second-order equations of motion and encompasses any perfect-fluid dark energy, quintessence, Brans-Dicke, $f(R)$ and covariant Galileon models. hi_class has been thoroughly tested and can be readily used to understand the impact of alternative theories of gravity on linear structure formation as well as for cosmological parameter extraction.
We study the problem of initial conditions for slow-roll inflation along a plateau-like scalar potential within the framework of fluctuation-dissipation dynamics. We consider, in particular, that inflation was preceded by a radiation-dominated epoch where the inflaton is coupled to light degrees of freedom and may reach a near-equilibrium state. We show that the homogeneous field component can be sufficiently localized at the origin to trigger a period of slow-roll if the interactions between the inflaton and the thermal degrees of freedom are sufficiently strong and argue that this does not necessarily spoil the flatness of the potential at the quantum level. We further conclude that the inflaton can still be held at the origin after its potential begins to dominate the energy balance, leading to a period of thermal inflation. This then suppresses the effects of nonlinear interactions between the homogeneous and inhomogeneous field modes that could prevent the former from entering a slow-roll regime. Finally, we discuss the possibility of an early period of chaotic inflation, at large field values, followed by a first stage of reheating and subsequently by a second inflationary epoch along the plateau about the origin. This scenario could prevent an early overclosure of the Universe, at the same time yielding a low tensor-to-scalar ratio in agreement with observations.
We use the 3+1 formalism of numerical relativity to investigate the robustness of Starobinsky and Higgs inflation to inhomogeneous initial conditions, in the form of either field gradient or kinetic energy density. Sub-Hubble and Hubble-sized fluctuations generically lead to inflation after an oscillatory phase between gradient and kinetic energies. Hubble-sized inhomogeneities also produce contracting regions that may end up forming primordial black holes, subsequently diluted by inflation. We analyse the dynamics of the preinflation era and the generation of vector and tensor fluctuations. Our analysis further supports the robustness of inflation to any size of inhomogeneity, in the field, velocity or equation of state. At large field values, the preinflation dynamics only marginally depends on the field potential and it is expected that such behaviour is universal and applies to any inflation potential of plateau-type, favoured by CMB observations after Planck.
Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for LambdaCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple N-body gauge for z<50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable forwards approach for such cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا