Pinning and creep determine the current--voltage characteristic of a type II superconductor and thereby its potential for technological applications. The recent development of strong pinning theory provides us with a tool to assess a superconductors electric properties in a quantitative way. Motivated by the observation of typical excess-current characteristics and field-scaling of critical currents, here, we analyze current--voltage characteristics measured on 2H-NbSe$_2$ and $a$-MoGe type II superconductors within the setting provided by strong pinning theory. The experimentally observed shift and rounding of the voltage-onset is consistent with the predictions of strong pinning in the presence of thermal fluctuations. We find the underlying parameters determining pinning and creep and discuss their consistency.
The vortex phase diagrams of NdFeAsO0.85F0.15 and NdFeAsO0.85 superconductors are determined from the analysis of resistivity and current-voltage (I-V) measurements in magnetic fields up to 9 T. A clear vortex glass to liquid transition is identified only in the oxygen deficient NdFeAsO0.85, in which I-V curves can be well scaled onto liquid and glass branches consistent with the vortex glass theory. With increasing magnetic field, the activation energy U0, deduced from the Arrhenius plots of resistivity based on the thermally activated flux-flow model (TAFF), decays more quickly for NdFeAsO0.85F0.15 than for NdFeAsO0.85. Moreover, the irreversibility field Hirr of NdFeAsO0.85 increases more rapidly than that of NdFeAsO0.85F0.15 with decreasing temperature. These observations evidence the strong vortex pinning effects, presumably caused by the enhanced defects and disorders in the oxygen deficient NdFeAsO0.85. It is inferred that the enhanced defects and disorder can be also responsible for the vortex glass to liquid transition in the NdFeAsO0.85.
We predict a novel buckling instability in the critical state of thin type-II superconductors with strong pinning. This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series of flux jumps visible in the magnetization curve. As an illustration we apply the obtained criteria to a long rectangular strip.
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density $n_p$ of defects that act with a large force $f_p$ on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density $langle F_p(v)rangle$ and find that it changes on the velocity scale $v_p sim f_p/eta a_0^3$, where $eta$ is the viscosity of vortex motion and $a_0$ the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity $v_c sim F_c/eta$ of the free vortex system at drives near the critical force-density $F_c = langle F_p(v=0)rangle propto n_p f_p$. As a result, we find a generic excess-force characteristic, a nearly linear force--velocity characteristic shifted by the critical force-density $F_c$; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulombs law of dry friction for the case of strong vortex pinning.
The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into the fundamental pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current $j_c$ decays with the magnetic field following a power-law $B^{-alpha}$ with $alpha approx 0.66$, which is consistent with predictions of strong-pinning theory. For a higher density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to $alpha approx 0.3$. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than $B^{-1}$ as would be expected by theory. In the case of larger inclusions with a diameter of four coherence length, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a peak in $j_c(B)$-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong-pinning theory and provide different routes to describe vortex pinning beyond those bounds.
In order to characterize flux flow through disordered type-II superconductors, we investigate the effects of columnar and point defects on the vortex velocity / voltage power spectrum in the driven non-equilibrium steady state. We employ three-dimensional Metropolis Monte Carlo simulations to measure relevant physical observables including the force-velocity / current-voltage (I-V) characteristics, vortex spatial arrangement and structure factor, and mean flux line radius of gyration. Our simulation results compare well to earlier findings and physical intuition. We focus specifically on the voltage noise power spectra in conjunction with the vortex structure factor in the presence of weak columnar and point pinning centers. We investigate the vortex washboard noise peak and associated higher harmonics, and show that the intensity ratios of the washboard harmonics are determined by the strength of the material defects rather than the type of pins present. Through varying columnar defect lengths and pinning strengths as well as magnetic flux density we further explore the effect of the material defects on vortex transport. It is demonstrated that the radius of gyration displays quantitatively unique features that depend characteristically on the type of material defects present in the sample.
Martin Buchacek
,Zhi-Li Xiao
,Surajit Dutta
.
(2019)
.
"Experimental test of strong pinning and creep in current-voltage characteristics of type II superconductors"
.
Martin Buchacek
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا