Do you want to publish a course? Click here

Chemical evolution along the circumnuclear ring of M83

76   0   0.0 ( 0 )
 Added by Nanase Harada
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an astrochemical study on the evolution of interstellar molecular clouds and consequent star formation in the center of the barred spiral galaxy M83. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to image molecular species indicative of shocks (SiO, CH$_3$OH), dense cores (N$_2$H$^+$), and photodissociation regions (CN and CCH), as well as a radio recombination line (H41$alpha$) tracing active star-forming regions. M83 has a circumnuclear gas ring that is joined at two areas by gas streams from the leading-edge gas lanes on the bar. We found elevated abundances of the shock and dense-core tracers in one of the orbit-intersecting areas, and found peaks of CN and H41$alpha$ downstream. At the other orbit-intersection area, we found similar enhancement of the shock tracers, but less variation of other tracers, and no sign of active star formation in the stream. We propose that the observed chemical variation or lack of it is due to the presence or absence of collision-induced evolution of molecular clouds and induced star formation. This work presents the most clear case of the chemical evolution in the circumnuclear rings of barred galaxies, thanks to the ALMA resolution and sensitivity.



rate research

Read More

386 - Aida Wofford , Rupali Chandar , 2010
We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_sol. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr, and do not appear to have an age gradient along M83s starburst. Clusters with strong P-Cygni profiles have masses of a few times 10^4 M_sol, seem to have formed stars more massive than 30 M_sol, and are consistent with a Kroupa IMF from 0.1-100 M_sol. Field regions in the starburst lack P-Cygni profiles and are dominated by B stars.
121 - Aida Wofford , Rupali Chandar , 2010
The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1$pm$0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV imaging and spectroscopy of 13 circumnuclear star clusters in M83. We compared the observed spectra with two types of single stellar population (SSP) models, semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE (Robert et al. 1993), and theoretical models, which are based on a new theoretical UV library of hot massive stars described in Leitherer et al. (2010) and computed with WM-Basic (Pauldrach et al. 2001). The models were generated with Starburst99 (Leitherer & Chen 2009). We derived the reddenings, the ages, and the masses of the clusters from model fits to the FUV spectroscopy, as well as from optical HST/WFC3 photometry.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc and the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
124 - N. Harada , D. Riquelme , S. Viti 2015
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO$^+$, HNC, CS, SO, SiO, NO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$ and H$_3$O$^+$ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between $2 times 10^4$ and $1 times 10^6,$cm$^{-3}$ and most species indicate values around several $times 10^5,$cm$^{-3}$, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is $sim10^4,$cm$^{-3}$, the cosmic-ray ionization rate is high, $>10^{-15} ,$s$^{-1}$, or shocks with velocities $> 40,$km s$^{-1}$ have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.
The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string and `popcorn paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from the FIR continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC4736.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا