Do you want to publish a course? Click here

Magnetic field, activity and companions of V410 Tau

83   0   0.0 ( 0 )
 Added by Louise Yu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the analysis, conducted as part of the MaTYSSE programme, of a spectropolarimetric monitoring of the ~0.8 Myr, ~1.4 MSun disc-less weak-line T Tauri star V410 Tau with the ESPaDOnS instrument at the Canada-France-Hawaii Telescope and NARVAL at the Telescope Bernard Lyot, between 2008 and 2016. With Zeeman-Doppler Imaging, we reconstruct the surface brightness and magnetic field of V410 Tau, and show that the star is heavily spotted and possesses a ~550 G relatively toroidal magnetic field. We find that V410 Tau features a weak level of surface differential rotation between the equator and pole ~5 times weaker than the solar differential rotation. The spectropolarimetric data exhibit intrinsic variability, beyond differential rotation, which points towards a dynamo-generated field rather than a fossil field. Long-term variations in the photometric data suggest that spots appear at increasing latitudes over the span of our dataset, implying that, if V410 Tau has a magnetic cycle, it would have a period of more than 8 years. Having derived raw radial velocities (RVs) from our spectra, we filter out the stellar activity jitter, modeled either from our Doppler maps or using Gaussian Process Regression. Thus filtered, our RVs exclude the presence of a hot Jupiter-mass companion below ~0.1 au, which is suggestive that hot Jupiter formation may be inhibited by the early depletion of the circumstellar disc, which for V410 Tau may have been caused by the close (few tens of au) M dwarf stellar companion.



rate research

Read More

We analyze spectropolarimetric data of the pre-cataclysmic variable binary system V471 Tau obtained with ESPaDOnS at the Canada-France-Hawaii Telescope in two observational campaigns (in Nov/Dec 2004 and Dec 2005). Using Zeeman-Doppler Imaging, we reconstruct the distribution of brightness map and large-scale magnetic field of the K2 dwarf at both epochs, as well as the amount of differential rotation by which surface maps are sheared. We detect significant fluctuations in the surface shear between the two campaigns. It goes from about twice the solar differential rotation rate to less than the solar value in a one-year interval. We conclude that the differential rotation fluctuations obtained for the K2 dwarf resemble those detected on the single-star analog AB Dor, although even larger amplitudes of variation are seen in the K2 dwarf of V471 Tau. Finally, we show that the differential rotation results obtained in this work do not favor an Applegate mechanism operating in the V471 Tau system, at least in its standard form, but leave room for explaining the observed orbital period fluctuations with exotic forms of similar phenomena based on dynamo processes operating within the convective zone of the K2 star.
We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at lower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.
We present a detailed temperature and magnetic investigation of the T Tauri star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging. Moreover we introduce a new line profile reconstruction method based on a singular value decomposition (SVD) to extract the weak polarized line profiles. One of the key features of the line profile reconstruction is that the SVD line profiles are amenable to radiative transfer modeling within our Zeeman-Doppler Imaging code iMap. The code also utilizes a new iterative regularization scheme which is independent of any additional surface constraints. To provide more stability a vital part of our inversion strategy is the inversion of both Stokes I and Stokes V profiles to simultaneously reconstruct the temperature and magnetic field surface distribution of V410 Tau. A new image-shear analysis is also implemented to allow the search for image and line profile distortions induced by a differential rotation of the star. The magnetic field structure we obtain for V410 Tau shows a good spatial correlation with the surface temperature and is dominated by a strong field within the cool polar spot. The Zeeman-Doppler maps exhibit a large-scale organization of both polarities around the polar cap in the form of a twisted bipolar structure. The magnetic field reaches a value of almost 2 kG within the polar region but smaller fields are also present down to lower latitudes. The pronounced non-axisymmetric field structure and the non-detection of a differential rotation for V410 Tau supports the idea of an underlying $alpha^2$-type dynamo, which is predicted for weak-lined T Tauri stars.
130 - Aleks Scholz 2011
FU Tau A is a young very low mass object in the Taurus star forming region which was previously found to have strong X-ray emission and to be anomalously bright for its spectral type. In this study we discuss these characteristics using new information from quasi-simultaneous photometric and spectroscopic monitoring. From photometric time series obtained with the 2.2m telescope on Calar Alto we measure a period of ~4d for FU Tau A, most likely the rotation period. The short-term variations over a few days are consistent with the rotational modulation of the flux by cool, magnetically induced spots. In contrast, the photometric variability on timescales of weeks and years can only be explained by the presence of hot spots, presumably caused by accretion. The hot spot properties are thus variable on timescales exceeding the rotation period, maybe due to long-term changes in the accretion rate or geometry. The new constraints from the analysis of the variability confirm that FU Tau A is affected by magnetically induced spots and excess luminosity from accretion. However, accretion is not sufficient to explain its anomalous position in the HR diagram. In addition, suppressed convection due to magnetic activity and/or an early evolutionary stage need to be invoked to fully account for the observed properties. These factors cause considerable problems in estimating the mass of FU Tau A and other objects in this mass/age regime, to the extent that it appears questionable if it is feasible to derive the Initial Mass Function for young low-mass stars and brown dwarfs.
66 - S.V.Jeffers 2018
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper we aim to monitor the evolution of $tau$ Boos large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with $tau$ Boos 120 day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that $tau$ Boo has a very fast magnetic cycle of only 240 days. At activity maximum $tau$ Boos large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا