Do you want to publish a course? Click here

Collective effects of link failures in linear flow networks

65   0   0.0 ( 0 )
 Added by Franz Kaiser
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The smooth operation of supply networks is crucial for the proper functioning of many systems, ranging from biological organisms such as the human blood transport system or plant leaves to man-made systems such as power grids or gas pipelines. Whereas the failure of single transmission elements has been analysed thoroughly for power grids, the understanding of multiple failures is becoming more and more important to prevent large scale outages with an increasing penetration of renewable energy sources. In this publication, we examine the collective nature of the simultaneous failure of several transmission elements. In particular, we focus on the difference between single transmission element failures and the collective failure of several elements. We demonstrate that already for two concurrent failures, the simultaneous outage can lead to an inversion of the direction of flow as compared to the two individual failures and find situations where additional outages may be beneficial for the overall system. In addition to that, we introduce a quantifier that performs very well in predicting if two outages act strongly collectively or may be treated as individual failures mathematically. Finally, we extend on recent progress made on the understanding of single link failures demonstrating that multiple link failures may be treated as superpositions of multiple electrical dipoles for lattice-like networks with collective effects completely vanishing in the continuum limit. Our results demonstrate that the simultaneous failure of multiple lines may lead to unexpected effects that cannot be easily described using the theoretical framework for single link failures.



rate research

Read More

The failure of a single link can degrade the operation of a supply network up to the point of complete collapse. Yet, the interplay between network topology and locality of the response to such damage is poorly understood. Here, we study how topology affects the redistribution of flow after the failure of a single link in linear flow networks with a special focus on power grids. In particular, we analyze the decay of flow changes with distance after a link failure and map it to the field of an electrical dipole for lattice-like networks. The corresponding inverse-square law is shown to hold for all regular tilings. For sparse networks, a long-range response is found instead. In the case of more realistic topologies, we introduce a rerouting distance, which captures the decay of flow changes better than the traditional geodesic distance. Finally, we are able to derive rigorous bounds on the strength of the decay for arbitrary topologies that we verify through extensive numerical simulations. Our results show that it is possible to forecast flow rerouting after link failures to a large extent based on purely topological measures and that these effects generally decay with distance from the failing link. They might be used to predict links prone to failure in supply networks such as power grids and thus help to construct grids providing a more robust and reliable power supply.
Cascading failure is a potentially devastating process that spreads on real-world complex networks and can impact the integrity of wide-ranging infrastructures, natural systems, and societal cohesiveness. One of the essential features that create complex network vulnerability to failure propagation is the dependency among their components, exposing entire systems to significant risks from destabilizing hazards such as human attacks, natural disasters or internal breakdowns. Developing realistic models for cascading failures as well as strategies to halt and mitigate the failure propagation can point to new approaches to restoring and strengthening real-world networks. In this review, we summarize recent progress on models developed based on physics and complex network science to understand the mechanisms, dynamics and overall impact of cascading failures. We present models for cascading failures in single networks and interdependent networks and explain how different dynamic propagation mechanisms can lead to an abrupt collapse and a rich dynamic behavior. Finally, we close the review with novel emerging strategies for containing cascades of failures and discuss open questions that remain to be addressed.
Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.
We investigate the effect of a specific edge weighting scheme $sim (k_i k_j)^{beta}$ on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter $beta$ and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter $beta$, we find that network resilience to cascading overloads and network throughput is optimal for the same value of $beta$ over the range of node capacities and available bandwidth.
The structure of real-world multilayer infrastructure systems usually exhibits anisotropy due to constraints of the embedding space. For example, geographical features like mountains, rivers and shores influence the architecture of critical infrastructure networks. Moreover, such spatial networks are often non-homogeneous but rather have a modular structure with dense connections within communities and sparse connections between neighboring communities. When the networks of the different layers are interdependent, local failures and attacks may propagate throughout the system. Here we study the robustness of spatial interdependent networks which are both anisotropic and heterogeneous. We also evaluate the effect of localized attacks having different geometrical shapes. We find that anisotropic networks are more robust against localized attacks and that anisotropic attacks, surprisingly, even on isotropic structures, are more effective than isotropic attacks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا