No Arabic abstract
It is widely considered that the classical Higgs branch of 4d $mathcal{N}=2$ SQCD is a well understood object. However there is no satisfactory understanding of its structure. There are two complications: (1) the Higgs branch chiral ring contains nilpotent elements, as can easily be checked in the case of $mathrm{SU}(N)$ with 1 flavour. (2) the Higgs branch as a geometric space can in general be decomposed into two cones with nontrivial intersection, the baryonic and mesonic branches. To study the second point in detail we use the recently developed tool of magnetic quivers for five-brane webs, using the fact that the classical Higgs branch for theories with 8 supercharges does not change through dimensional reduction. We compare this approach with the computation of the hyper-Kahler quotient using Hilbert series techniques, finding perfect agreement if nilpotent operators are eliminated by the computation of a so called radical. We study the nature of the nilpotent operators and give conjectures for the Hilbert series of the full Higgs branch, giving new insights into the vacuum structure of 4d $mathcal{N}=2$ SQCD. In addition we demonstrate the power of the magnetic quiver technique, as it allows us to identify the decomposition into cones, and provides us with the global symmetries of the theory, as a simple alternative to the techniques that were used to date.
Magnetic quivers have led to significant progress in the understanding of gauge theories with 8 supercharges at UV fixed points. For a given low-energy gauge theory realised via a Type II brane construction, there exist magnetic quivers for the Higgs branches at finite and infinite gauge coupling. Comparing these moduli spaces allows to study the non-perturbative effects when transitioning to the fixed point. For 5d $mathcal{N}=1$ SQCD, 5-brane webs have been an important tool for deriving magnetic quivers. In this work, the emphasis is placed on 5-brane webs with orientifold 5-planes which give rise to 5d theories with orthogonal or symplectic gauge groups. For this set-up, the magnetic quiver prescription is derived and contrasted against a unitary magnetic quiver description extracted from an O$7^-$ construction. Further validation is achieved by a derivation of the associated Hasse diagrams. An important class of families considered are the orthogonal exceptional $E_n$ families ($-infty < n leq 8$), realised as infinite coupling Higgs branches of $mathrm{Sp}(k)$ gauge theories with fundamental matter. In particular, the moduli spaces are realised by a novel type of magnetic quivers, called unitary-orthosymplectic quivers.
We study the Higgs branch of 5d superconformal theories engineered from brane webs with orientifold five-planes. We propose a generalization of the rules to derive magnetic quivers from brane webs pioneered in arXiv:2004.04082, by analyzing theories that can be described with a brane web with and without O5 planes. Our proposed magnetic quivers include novel features, such as hypermultiplets transforming in the fundamental-fundamental representation of two gauge nodes, antisymmetric matter, and $mathbb{Z}_2$ gauge nodes. We test our results by computing the Coulomb and Higgs branch Hilbert series of the magnetic quivers obtained from the two distinct constructions and find agreement in all cases.
We discuss the effective Chern-Simons levels for 3d $mathcal{N}=2$ gauge theories and their relations to the relative angles between NS5-brane and NS5-brane. We find that turning on real masses for chiral multiplets leads to various equivalent brane webs that are related by flipping the sign of mass parameters. This flip can be interpreted as 3d mirror symmetry for abelian theories. Each of these webs has a corresponding mathematical quiver structure. We check the equivalence of vortex partition functions for these brane webs by implementing topological vertex method. In addition, we compute the vortex partition functions of nonabelian theories with gauge group $U(N)$ and find the associated quiver structures and brane webs. We find that on Higgs branch nonabelian brane webs are broken to abelian brane webs with gauge group $U(1)^{otimes N}$. We also discuss the Ooguri-Vafa invariants for nonabelian theories and the movement of flavor D5-branes that leads to equivalent brane webs.
We consider Type IIB 5-brane configurations for 5d rank 2 superconformal theories which are classified recently by geometry in arXiv:1801.04036. We propose all the 5-brane web diagrams for these rank 2 theories and show dualities between some of different gauge theories with explicit duality map of mass parameters and Coulomb branch moduli. In particular, we explicitly construct 5-brane configurations for $G_2$ gauge theory with six flavors and its dual $Sp(2)$ and $SU(3)$ gauge theories. We also present 5-brane webs for $SU(3)$ theories of Chern-Simons level greater than 5.
In a recent paper [1] we showed that N=1 supersymmetric QCD in the presence of certain superpotential deformations has a rich landscape of supersymmetric and non-supersymmetric vacua. In this paper we embed this theory in string theory as a low energy theory of intersecting NS and D-branes. We find that in the region of parameter space of brane configurations that can be reliably studied using classical string theory, the vacuum structure is qualitatively similar to that in the field theory regime. Effects that in field theory come from one loop corrections arise in string theory as classical gravitational effects. The brane construction provides a useful guide to the structure of stable and metastable gauge theory vacua.