Do you want to publish a course? Click here

Interstellar dust along the line of sight of GX 3+1

107   0   0.0 ( 0 )
 Added by Daniele Rogantini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying absorption and scattering of X-ray radiation by interstellar dust grains allows us to access the physical and chemical properties of cosmic grains even in the densest regions of the Galaxy. We aim at characterising the dust silicate population which presents clear absorption features in the energy band covered by the Chandra X-ray Observatory. Through these absorption features, in principle, it is possible to infer the size distribution, composition, and structure of silicate in the interstellar medium. In particular, in this work, we investigate the magnesium and silicon K-edges. By using newly acquired synchrotron measurements, we build X-ray extinction models for fifteen dust candidates. These models, adapted for astrophysical analysis, and implemented in the Spex spectral fitting program, are used to reproduce the dust absorption features observed in the spectrum of the bright low mass X-ray binary GX 3+1 which is used as a background source. With the simultaneous analysis of the two edges we test two different size distributions of dust: one corresponding to the standard Mathis-Rumpl-Nordsieck model and one considering larger grains ($n(a) propto a_i^{-3.5}$ with $0.005<a_1<0.25$ and $0.05<a_2<0.5$, respectively, with $a$ the grain size). These distributions may be representative of the complex Galactic region towards this source. We find that up to $70%$ of dust is constituted by amorphous olivine. We discuss the crystallinity of the cosmic dust found along this line of sight. Both magnesium and silicon are highly depleted into dust ($delta_{Z} = 0.89 rm{and} 0.94$, respectively) while their total abundance does not depart from solar values.



rate research

Read More

Interstellar dust permeates our Galaxy and plays an important role in many physical processes in the diffuse and dense regions of the interstellar medium. High-resolution X-ray spectroscopy, coupled with modelling based on laboratory dust measurements, provides a unique probe to investigate the interstellar dust properties along our line of sight towards Galactic X-ray sources. Here, we focus on the oxygen content of the interstellar medium through its absorption features in the X-ray spectra. To model the dust features, we perform a laboratory experiment using the electron microscope facility located at the University of Cadiz in Spain, where we acquire new laboratory data in the oxygen K-edge. We study 18 dust samples of silicates and oxides with different chemical compositions. The laboratory measurements are adopted for our astronomical data analysis. We carry out a case study on the X-ray spectrum of the bright low-mass X-ray binary Cygnus X-2, observed by XMM-Newton. We determine different temperature phases of the ISM, and parameterize oxygen in both gas (neutral and ionised) and dust form. We find Solar abundances of oxygen along the line of sight towards the source. Due to both the relatively low depletion of oxygen into dust form and the shape of the oxygen cross section profiles, it is challenging to determine the precise chemistry of interstellar dust. However, silicates provide an acceptable fit. Finally, we discuss the systematic discrepancies in the atomic (gaseous phase) data of the oxygen edge spectral region using different X-ray atomic databases, and also consider future prospects for studying the ISM with the Arcus concept mission.
237 - Maryvonne Gerin 2010
We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6$-$0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6$-$0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms$^{-1}$ we estimate total column densities of $N$(OH+) $> 2.5 times 10^{14}$ cm$^{-2}$, $N$(H2O+) $sim 6 times 10^{13}$ cm$^{-2}$ and $N$(H3O+) $sim 4.0 times 10^{13}$ cm$^{-2}$. These detections confirm the role of O$^+$ and OH$^+$ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form.
99 - S.T. Zeegers 2016
We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic Plane. X-rays provide a powerful tool in this study. We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary (LMXB) GX 5-1. The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. We measured the hydrogen column density towards GX 5-1 to be $3.40pm0.1times10^{22} rm cm^{-2}$. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of $4.0pm0.3times10^{-5}$ per H atom and a lower limit for total abundance, considering both gas and dust, of $>4.4times10^{-5}$ per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.
The dense Galactic environment is a large reservoir of interstellar dust. Therefore, this region represents a perfect laboratory to study the properties of the cosmic dust grains. X-rays are the most direct way to detect the interaction of light with dust present in these dense environments. The interaction between the radiation and the interstellar matter imprints specific absorption features in the X-ray spectrum. We study them with the aim of defining the chemical composition, the crystallinity and structure of the dust grains which populate the inner regions of the Galaxy. We investigate the magnesium and the silicon K-edges detected in the Chandra/HETG spectra of eight bright X-ray binaries, distributed in the neighbourhood of the Galactic centre. We model the two spectral features using accurate extinction cross sections of silicates, that we have measured at the synchrotron facility Soleil, France. Near the Galactic centre magnesium and silicon show abundances similar to the solar ones and they are highly depleted from the gas phase ($delta_{rm{Mg}}>0.90$ and $delta_{rm{Si}}>0.96$). We find that amorphous olivine with a composition of $rm MgFeSiO_{4}$ is the most representative compound along all lines of sight according to our fits. The contribution of Mg-rich silicates and quartz is low (less than $10%$). On average we observe a percentage of crystalline dust equal to $11%$. For the extragalactic source LMC X-1, we find a preference for forsterite, a magnesium-rich olivine. Along this line of sight we also observe an underabundance of silicon $A_{rm Si}/A_{rm LMC} = 0.5pm0.2$.
The Cherenkov Telescope Array (CTA) is the next generation ground based observatory for gamma ray astronomy at very high energies. Employing more than 100 Imaging Atmospheric Cherenkov Telescopes in the northern and southern hemispheres, it was designed to reach unprecedented sensitivity and energy resolution. Understanding and correcting for systematic biases on the absolute energy scale and instrument response functions will be a crucial issue for the performance of CTA. The LUPM group and the Spanish/Italian/Slovenian collaboration are currently building two Raman LIDAR prototypes for the online atmospheric calibration along the line of sight of the CTA. Requirements for such a solution include the ability to characterize aerosol extinction at two wavelengths to distances of 30 km with an accuracy better than 5%, within time scales of about a minute, steering capabilities and close interaction with the CTA array control and data acquisition system as well as other auxiliary instruments. Our Raman LIDARs have design features that make them different from those used in atmospheric science and are characterized by large collecting mirrors (2.5 m2), liquid light guides that collect the light at the focal plane and transport it to the readout system, reduced acquisition time and highly precise Raman spectrometers. The Raman LIDARs will participate in a cross calibration and characterization campaign of the atmosphere at the CTA North site at La Palma, together with other site characterization instruments. After a one year test period there, an in depth evaluation of the solutions adopted by the two projects will lead to a final Raman LIDAR design proposal for both CTA sites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا