Do you want to publish a course? Click here

A dynamical mean-field study of orbital-selective Mott phase enhanced by next-nearest neighbor hopping

288   0   0.0 ( 0 )
 Added by Yun Song
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetry at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hunds rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.



rate research

Read More

563 - S. Nishimoto , K. Sano , 2007
We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity which maps the problem onto the case of only nearest-neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric spectrum with additional van-Hove singularities.
We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in presence of Hunds coupling interaction. By analytical analysis of Hamiltonian, we show that the locking of the two orbitals vs.,orbital-selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean-field to impurity problem, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating inter-orbital tunnellings in the case of multi-orbital Bethe lattices with particle-hole symmetry.
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed the existence of an orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scattering (INS) experiments on the BaFe$_2$Se$_3$ ladder compound confirmed the relevance of the block-OSMP. Moreover, the powder INS spectrum reveled an unexpected structure, containing both low-energy acoustic and high-energy optical modes. Here we present the theoretical prediction for the dynamical spin structure factor within a block-OSMP regime using the density-matrix renormalization group method. In agreement with experiments we find two dominant features: low-energy dispersive and high-energy dispersionless modes. We argue that the former represents the spin-wave-like dynamics of the block ferromagnetic islands, while the latter is attributed to a novel type of local on-site spin excitations controlled by the Hund coupling.
98 - S. Nishimoto , T. Shirakawa , 2007
The dynamical density-matrix renormalization group technique is used to calculate spin and charge excitation spectra in the one-dimensional (1D) Hubbard model at quarter filling with nearest-neighbor $t$ and next-nearest-neighbor $t$ hopping integrals. We consider a case where $t$ ($>0$) is much smaller than $t$ ($>0$). We find that the spin and charge excitation spectra come from the two nearly independent $t$-chains and are basically the same as those of the 1D Hubbard (and t-J) chain at quarter filling. However, we find that the hopping integral $t$ plays a crucial role in the short-range spin and charge correlations; i.e., the ferromagnetic spin correlations between electrons on the neighboring sites is enhanced and simultaneously the spin-triplet pairing correlations is induced, of which the consequences are clearly seen in the calculated spin and charge excitation spectra at low energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا