Do you want to publish a course? Click here

Multiplicity fluctuations in the Glauber Monte Carlo approach

130   0   0.0 ( 0 )
 Added by Maciej Rybczynski
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We discuss multiplicity fluctuations of charged particles produced in nuclear collisions measured event-by-event by the NA49 experiment at CERN SPS within the Glauber Monte Carlo approach. We use the concepts of wounded nucleons and wounded quarks in the mechanism of multiparticle production to characterize multiplicity fluctuations expressed by the scaled variance of multiplicity distribution. Although Wounded Nucleon Model correctly reproduce the centrality dependence of the average multiplicity in Pb+Pb collisions, it completely fails in description of corresponding centrality dependence of scaled variance of multiplicity distribution. Using subnucleonic degrees of freedom, i.e. wounded quarks within Wounded Quark Model, it is possible to describe quite well the multiplicity distribution of charged particles produced in proton+proton interactions. However, the Wounded Quark Model with parameters describing multiplicity distribution of particles produced in proton+proton interactions substantially exceeds the average multiplicity of charged particles produced in Pb+Pb collisions. To obtain values of average multiplicities close to those experimentally measured in Pb+Pb collisions, the concept of shadowed quark sources is implemented. Wounded Quark Model with implemented shadowing source scenario reproduces the centrality dependence of scaled variance of multiplicity distribution of charged particles produced in Pb+Pb collisions in the range from the most central to mid-peripheral interactions.



rate research

Read More

In hydrodynamicalmodeling of heavy-ion collisions the initial state spatial anisotropies translate into momentum anisotropies of the final state particle distributions. Thus, understanding the origin of the initial anisotropies and quantifying their uncertainties is important for the extraction of specific QCD matter properties, such as viscosity, from the experimental data. In this work we study the wounded nucleon approach in the Monte Carlo Glauber model framework, focusing especially on the uncertainties which arise from the modeling of the nucleon-nucleon interactions between the colliding nucleon pairs and nucleon-nucleon correlations inside the colliding nuclei. We compare the black disk model and a probabilistic profile function approach for the inelastic nucleon-nucleon interactions, and study the effects of initial state correlations using state-of-theart modeling of these.
We explore Glauber Monte Carlo predictions for the planned ultra-relativistic ${}^{16}{rm O}$+${}^{16}{rm O}$ and p+${}^{16}{rm O}$ collisions, as well as for collisions of ${}^{16}{rm O}$ on heavy targets. In particular, we present specific collective flow measures which are approximately independent on the hydrodynamic response of the system, such as the ratios of eccentricities obtained from cumulants with different numbers of particles, or correlations of ellipticity and triangularity described by the normalized symmetric cumulants. We use the state-of-the-art correlated nuclear distributions for ${}^{16}{rm O}$ and compare the results to the uncorrelated case, finding moderate effects for the most central collisions. We also consider the wounded quark model, which turns out to yield similar results to the wounded nucleon model for the considered measures. The purpose of our study is to prepare some ground for the upcoming experimental proposals, as well as to provide input for possible more detailed dynamical studies with hydrodynamics or transport codes.
78 - V. V. Vechernin 2007
In the framework of the classical Glauber approach the exact analytical expression for the variance of the number of participants (wounded nucleons) for given centrality AA interactions is presented. Its shown, that in the case of nucleus-nucleus collisions along with the optical approximation term the additional contact term appears. The numerical calculations for PbPb collisions at SPS energies show that at intermediate values of the impact parameter the optical and contact terms contributions to the variance of the participants number are of the same order and their sum is in a good agreement with the results of independent MC simulations of this process. The correlation between the numbers of participants in colliding nuclei is taken into account. In particular its demonstrated that in PbPb collisions at SPS energies the variance of the total number of participants approximately three times exceeds the Poisson one in the impact parameter region 10-12 Fm. The fluctuations of the number of collisions are also discussed.
As one of the possible signals for the whereabouts of the critical point on the QCD phase diagram, recently, the multiplicity fluctuations in heavy-ion collisions have aroused much attention. It is a crucial observable of the Beam Energy Scan program of the Relativistic Heavy Ion Collider. In this work, we investigate the centrality dependence of the multiplicity fluctuations regarding the recent measurements from STAR Collaboration. By employing a hydrodynamical approach, the present study is dedicated to the noncritical aspects of the phenomenon. To be specific, in addition to the thermal fluctuations, finite volume corrections, and resonance decay at the freeze-out surface, the model is focused on the properties of the hydrodynamic expansion of the system and the event-by-event initial fluctuations. It is understood that the real signal of the critical point can only be obtained after appropriately subtracting the background, the latter is investigated in the present work. Besides the experimental data, our results are also compared to those of the hadronic resonance gas, as well as transport models.
In the framework of the classical Glauber approach, the analytical expressions for the variance of the number of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with the optical approximation term, they contain additional contact terms arising only in the case of nucleus-nucleus collisions. The magnitude of the additional contributions, e.g., for PbPb collisions at SPS energies, is larger than the contribution of the optical approximation at some values of the impact parameter. The sum of the additional contributions is in good agreement with the results of independent Monte Carlo simulations of this process. Due to these additional terms, the variance of the total number of participants for peripheral PbPb collisions and the variance of the number of collisions at all values of the impact parameter exceed several multiples of the Poisson variances. The correlator between the numbers of participants in colliding nuclei at fixed centrality is also analytically calculated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا