Do you want to publish a course? Click here

The arithmetic basilica: a quadratic PCF arboreal Galois group

111   0   0.0 ( 0 )
 Added by Robert Benedetto
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The arboreal Galois group of a polynomial $f$ over a field $K$ encodes the action of Galois on the iterated preimages of a root point $x_0in K$, analogous to the action of Galois on the $ell$-power torsion of an abelian variety. We compute the arboreal Galois group of the postcritically finite polynomial $f(z) = z^2 - 1$ when the field $K$ and root point $x_0$ satisfy a simple condition. We call the resulting group the arithmetic basilica group because of its relation to the basilica group associated with the complex dynamics of $f$. For $K=mathbb{Q}$, our condition holds for infinitely many choices of $x_0$.



rate research

Read More

We formulate a general question regarding the size of the iterated Galois groups associated to an algebraic dynamical system and then we discuss some special cases of our question.
175 - Irene I. Bouw , Ozlem Ejder , 2018
We consider a large class of so-called dynamical Belyi maps and study the Galois groups of iterates of such maps. From the combinatorial invariants of the maps, we construct a useful presentation of their Galois groups as subgroups of automorphism groups of regular trees, in terms of iterated wreath products. This allows us to study the behavior of the monodromy groups under specialization of the maps, and to derive applications to dynamical sequences.
109 - Johan Bosman 2007
In this paper we show an explicit polynomial in Q[x] that has Galois group SL2(F16), filling in a gap in the tables of Juergen Klueners and Gunther Malle. The computation of this polynomial uses modular forms and their Galois representations.
201 - Lex E. Renner 2008
Let $ksubseteq K$ be a finite Galois extension of fields with Galois group $G$. Let $mathscr{G}$ be the automorphism $k$-group scheme of $K$. We construct a canonical $k$-subgroup scheme $underline{G}subsetmathscr{G}$ with the property that $Spec_k(K)$ is a $k$-torsor for $underline{G}$. $underline{G}$ is a constant $k$-group if and only if $G$ is abelian, in which case $G=underline{G}$.
For positive integers $n$, the truncated binomial expansions of $(1+x)^n$ which consist of all the terms of degree $le r$ where $1 le r le n-2$ appear always to be irreducible. For fixed $r$ and $n$ sufficiently large, this is known to be the case. We show here that for a fixed positive integer $r e 6$ and $n$ sufficiently large, the Galois group of such a polynomial over the rationals is the symmetric group $S_{r}$. For $r = 6$, we show the number of exceptional $n le N$ for which the Galois group of this polynomial is not $S_r$ is at most $O(log N)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا