We assemble an unbiased sample of 29 galaxies with [O II] $lambda 3727$ and/or [O III] $lambda 5007$ detections at $z < 0.15$ from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Pilot Survey (HPS). HPS finds galaxies without pre-selection based on their detected emission lines via integral field spectroscopy. Sixteen of these objects were followed up with the second-generation, low resolution spectrograph (LRS2) on the upgraded Hobby-Eberly Telescope. Oxygen abundances were then derived via strong emission lines using a Bayesian approach. We find most of the galaxies fall along the mass-metallicity relation derived from photometrically selected star forming galaxies in the Sloan Digital Sky Survey (SDSS). However, two of these galaxies have low metallicity (similar to the very rare green pea galaxies in mass-metallicity space). The star formation rates of this sample fall in an intermediate space between the SDSS star forming main sequence and the extreme green pea galaxies. We conclude that spectroscopic selection fills part of the mass-metallicity-SFR phase space that is missed in photometric surveys with pre-selection like SDSS, i.e., we find galaxies that are actively forming stars but are faint in continuum. We use the results of this pilot investigation to make predictions for the upcoming unbiased, large spectroscopic sample of local line emitters from HETDEX. With the larger HETDEX survey we will determine if galaxies selected spectroscopically without continuum brightness pre-selection have metallicities that fall on a continuum that bridges typical star forming and rarer, more extreme systems like green peas.