Do you want to publish a course? Click here

Helium variations in Galactic and extragalactic Globular Clusters

70   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent measurements of internal variations of helium in Galactic and extragalactic Globular Clusters (GCs) set binding constraints to the models of formation of Multiple Populations (MPs) in GCs, and gave rise, at the same time, to crucial questions related with the influence of the environment on MP formation as well as with the role played by GCs in the early galactic formation. We present the most recent estimates of helium enrichment in the main populations of a large sample of Galactic and extragalactic GCs.



rate research

Read More

Recent work, based on data from the Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GCs), has revealed that all the analyzed clusters host two groups of first- (1G) and second-generation (2G) stars. In most GCs, both 1G and 2G stars host sub-stellar populations with different chemical composition. We compare multi-wavelength HST photometry with synthetic spectra to determine for the first time the average helium difference between the 2G and 1G stars in a large sample of 57 GCs and the maximum helium variation within each of them. We find that in all clusters 2G stars are consistent with being enhanced in helium with respect to 1G. The maximum helium variation ranges from less than 0.01 to more than 0.10 in helium mass fraction and correlates with both the cluster mass and the color extension of the horizontal branch (HB). These findings demonstrate that the internal helium variation is one of the main (second) parameters governing the HB morphology.
We have performed a census of the UV-bright population in 78 globular clusters using wide-field UV telescopes. This population includes a variety of phases of post-horizontal branch (HB) evolution, including hot post-asymptotic giant branch (AGB) stars, and post-early AGB stars. There are indications that old stellar systems like globular clusters produce fewer post-(early) AGB stars than currently predicted by evolutionary models, but observations are still scarce. We obtained FORS2 spectroscopy of eleven of these UV-selected objects (covering a range of -2.3<[Fe/H]<-1.0), which we (re-)analysed together with previously observed data. We used model atmospheres of different metallicities, including super-solar ones. Where possible, we verified our atmospheric parameters using UV spectrophotometry and searched for metal lines in the optical spectra. We calculated evolutionary sequences for four metallicity regimes and used them together with information about the HB morphology of the globular clusters to estimate the expected numbers of post-AGB stars. Seven of the eleven new luminous UV-bright stars are post-AGB or post-early AGB stars, two are evolving away from the HB, one is a foreground white dwarf, and one is a white dwarf merger. So spectroscopy is clearly required to identify the evolutionary status of hot UV-bright stars. For hotter stars, metal-rich model spectra are required to reproduce their optical and UV spectra, which may affect the flux contribution of hot post-AGB stars to the UV spectra of evolved populations. Adding published information on other hot UV-bright stars in globular clusters, we find that the number of observed hot post-AGB stars generally agrees with the predicted values, although the numbers are still low.
Spreads in light element abundances among stars (a.k.a. multiple populations) are observed in nearly all globular clusters. One way to map such chemical variations using high-precision photometry is to employ a suitable combination of stellar magnitudes in the F275W, F336W, F438W, and F814W filters (the so called chromosome map), to maximise the separation between the different multiple populations. For each individual cluster its chromosome map separates the so-called first population -with metal abundance patterns typical of field halo stars- from the second population, that displays distinctive abundance variations among a specific group of light-elements. Surprisingly, the distribution of first population stars in chromosome maps of several -but not all- clusters has been found to be more extended than expected from purely observational errors, suggesting a chemically inhomogeneous origin. We consider here three clusters with similar metallicity ([Fe/H]~-1.3) and different chromosome maps, namely NGC 288, M 3 and NGC 2808, and argue that the first population extended distribution (as observed in two of these clusters) is due to spreads of the initial helium abundance and possibly a small range of nitrogen abundances as well. The presence of a range of initial He and N abundances amongst stars traditionally thought to have homogeneous composition, plus the fact that these spreads appear only in some clusters, challenge the scenarios put forward so far to explain the multiple population phenomenon.
We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, absorptions, and helium values for each cluster under the scenario of a single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario.
209 - M. Hilker 2009
In the last decade, a new kind of stellar systems has been established that shows properties in between those of globular clusters (GCs) and early-type dwarf galaxies. These so-called ultra-compact dwarf galaxies (UCDs) have masses in the range 10^6 to 10^8 M_sun and half-light radii of 10-100 pc. The most massive UCDs known to date are predominantly metal-rich and reside in the cores of nearby galaxy clusters. The question arises whether UCDs are just the most massive globular clusters in rich globular cluster systems? Although UCDs and `normal GCs form a continuous sequence in several parameter spaces, there seems to be a break in the scaling laws for stellar systems with masses above ~2.5x10^6 M_sun. Unlike GCs, UCDs follow a mass-size relation and their mass-to-light ratios are about twice as large as those of GCs with comparable metallicities. In this contribution, I present the properties of the brightest globular clusters and ultra-compact dwarf galaxies and discuss whether the observed findings are compatible with a `star-cluster origin of UCDs or whether they are more likely related to dark matter dominated dwarf galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا