We study the classes of free and plus-one generated hyperplane arrangements. Specifically, we describe how to compute the associated prime ideals of the Jacobian ideal of such an arrangement from its lattice of intersection. Moreover, we prove that the localization of a plus-one generated arrangement is free or plus-one generated.
We introduce a new class of arrangements of hyperplanes, called (strictly) plus-one generated arrangements, from algebraic point of view. Plus-one generatedness is close to freeness, i.e., plus-one generated arrangements have their logarithmic derivation modules generated by dimension plus one elements, with relations containing one linear form coefficient. We show that strictly plus-one generated arrangements can be obtained if we delete a hyperplane from free arrangements. We show a relative freeness criterion in terms of plus-one generatedness. In particular, for plane arrangements, we show that a free arrangement is in fact surrounded by free or strictly plus-one generated arrangements. We also give several applications.
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements.
We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give an explicit sufficient and necessary condition for the deletion theorem in terms of characteristic polynomials. This gives a lot of corollaries including the existence of free filtrations. The proof is based on the result about the form of minimal generators of a logarithmic derivation module of a multiarrangement which satisfies the $b_2$-equality.
In the study of free arrangements, the most useful result to construct/check free arrangements is the addition-deletion theorem. Recently, the multiple version of the addition theorem is proved, called the multiple addition theorem (MAT) to prove the ideal-free theorem. The aim of this article is to give the deletion version of MAT, the multiple deletion theorem (MDT). Also, we can generalize MAT from the viewpoint of our new proof. Moreover, we introduce their restriction version, a multiple restriction theorem (MRT). Applications of them including the combinatorial freeness of the extended Catalan arrangements are given.
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dimensions of hyperplane arrangements. They are generalizations of the free arrangement cases, that can be regarded as the special case of our result when the projective dimension is zero. The keys to prove them are several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, that is combinatorial when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is comibinatorially determined.