Do you want to publish a course? Click here

The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas

58   0   0.0 ( 0 )
 Added by Jonathan Davies
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the connection between the properties of the circumgalactic medium (CGM) and the quenching and morphological evolution of central galaxies in the EAGLE and IllustrisTNG simulations. The simulations yield very different median CGM mass fractions, $f_{rm CGM}$, as a function of halo mass, $M_{200}$, with low-mass haloes being significantly more gas-rich in IllustrisTNG than in EAGLE. Nonetheless, in both cases scatter in $f_{rm CGM}$ at fixed $M_{200}$ is strongly correlated with the specific star formation rate and the kinematic morphology of central galaxies. The correlations are strongest for $sim L^star$ galaxies, corresponding to the mass scale at which AGN feedback becomes efficient. This feedback elevates the CGM cooling time, preventing gas from accreting onto the galaxy to fuel star formation, and thus establishing a preference for quenched, spheroidal galaxies to be hosted by haloes with low $f_{rm CGM}$ for their mass. In both simulations, $f_{rm CGM}$ correlates negatively with the host halos intrinsic concentration, and hence with its binding energy and formation redshift, primarily because early halo formation fosters the rapid early growth of the central black hole (BH). This leads to a lower $f_{rm CGM}$ at fixed $M_{200}$ in EAGLE because the BH reaches high accretion rates sooner, whilst in IllustrisTNG it occurs because the central BH reaches the mass threshold at which AGN feedback is assumed to switch from thermal to kinetic injection earlier. Despite these differences, there is consensus from these state-of-the-art simulations that the expulsion of efficiently-cooling gas from the CGM is a crucial step in the quenching and morphological evolution of central galaxies.



rate research

Read More

We examine the influence of dark matter halo assembly on the evolution of a simulated $sim L^star$ galaxy. Starting from a zoom-in simulation of a star-forming galaxy evolved with the EAGLE galaxy formation model, we use the genetic modification technique to create a pair of complementary assembly histories: one in which the halo assembles later than in the unmodified case, and one in which it assembles earlier. Delayed assembly leads to the galaxy exhibiting a greater present-day star formation rate than its unmodified counterpart, whilst in the accelerated case the galaxy quenches at $zsimeq 1$, and becomes spheroidal. We simulate each assembly history nine times, adopting different seeds for the random number generator used by EAGLEs stochastic subgrid implementations of star formation and feedback. The systematic changes driven by differences in assembly history are significantly stronger than the random scatter induced by this stochasticity. The sensitivity of $sim L^star$ galaxy evolution to dark matter halo assembly follows from the close coupling of the growth histories of the central black hole (BH) and the halo, such that earlier assembly fosters the formation of a more massive BH, and more efficient expulsion of circumgalactic gas. In response to this expulsion, the circumgalactic medium reconfigures at a lower density, extending its cooling time and thus inhibiting the replenishment of the interstellar medium. Our results indicate that halo assembly history significantly influences the evolution of $sim L^star$ central galaxies, and that the expulsion of circumgalactic gas is a crucial step in quenching them.
We study the morphological transformation from late types to early types and the quenching of galaxies with the seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS). Both early type galaxies and late type galaxies are found to have bimodal distributions on the star formation rate versus stellar mass diagram ($lg SFR - lg M_*$). We therefore classify them into four types: the star-forming early types (sEs), the quenched early types (qEs), the star-forming late types (sLs) and the quenched late types (qLs). We checked many parameters on various environmental scales for their potential effects on the quenching rates of late types and early types, as well as the early type fractions among star-forming galaxies and those among quenched galaxies. These parameters include: the stellar mass $M_*$, and the halo mass $M_{halo}$; the small-scale environmental parameters, such as the halo centric radius $R_p/r_{180}$ and the third nearest neighbor distances ($d_{3nn}$); the large-scale environmental parameters, specifically whether they are located in clusters, filaments, sheets, or voids. We found that the morphological transformation is mainly regulated by the stellar mass. Quenching is mainly driven by the stellar mass for more massive galaxies and by the halo mass for galaxies with smaller stellar masses. In addition, we see an overall stronger halo quenching effect in early type galaxies, which might be attributed to their lacking of cold gas or earlier accretion into the massive host halos.
Davies et al. (2019) established that for L^* galaxies the fraction of baryons in the circumgalactic medium (CGM) is inversely correlated with the mass of their central supermassive black holes (BHs) in the EAGLE hydrodynamic simulation. The interpretation is that, over time, a more massive BH has provided more energy to transport baryons beyond the virial radius, which additionally reduces gas accretion and star formation. We continue this research by focusing on the relationship between the 1) BH masses, 2) physical and observational properties of the CGM, and 3) galaxy colours for Milky Way-mass systems. The ratio of the cumulative BH feedback energy over the gaseous halo binding energy is a strong predictor of the CGM gas content, with BHs injecting >~10x the binding energy resulting in gas-poor haloes. Observable tracers of the CGM, including CIV, OVI, and HI absorption line measurements, are found to be effective tracers of the total z~0 CGM halo mass. We use high-cadence simulation outputs to demonstrate that BH feedback pushes baryons beyond the virial radius within 100 Myr timescales, but that CGM metal tracers take longer (0.5-2.5 Gyr) to respond. Secular evolution of galaxies results in blue, star-forming or red, passive populations depending on the cumulative feedback from BHs. The reddest quartile of galaxies with M_*=10^{10.2-10.7} M_solar (median u-r = 2.28) has a CGM mass that is 2.5x lower than the bluest quartile (u-r=1.59). We propose strategies for observing the predicted lower CGM column densities and covering fractions around galaxies hosting more massive BHs using the Cosmic Origins Spectrograph on Hubble.
We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies. We show that stellar feedback-generated outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching (from e.g. infall into a galaxy cluster), naturally reproduce the observed population of red UDGs, without the need for high spin halos or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed z=0 red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated galaxies with M_star ~1e8 Msun, low metallicity and a broad range of ages. The most massive simulated UDGs require earliest quenching and are therefore the oldest. Our simulations provide a good match to the central enclosed masses and the velocity dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the simulated UDGs remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The most massive red UDG in our sample requires quenching at z~3 when its halo reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0 its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with mass-to-light ratios similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around Ms~1e8 Msun, both in the field and in clusters.
The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard $Lambda $CDM paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGNs by comparing two simulations from the HORIZON suite, which are identical except that one also includes super massive black holes (SMBH), and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies ($ rm M_{*} geq 10^{11} M_odot $) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80% at $z=0$. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range $ rm 10^9 M_odot leq M_{*} leq 10^{11} M_odot $, and a disruption of central gas inflows, which limits in-situ star formation. As a result, net gas inflows onto massive galaxies, $ rm M_{*} geq 10^{11} M_odot $, drop by up to 70%. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the $rm M_{rm SMBH}-M_* $ relation with redshift, particularly for galaxies with $rm M_{*} leq 10^{10} M_odot $. $rm M_{rm SMBH}/M_*$ ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا