With superconducting transmon qubits --- a promising platform for quantum information processing --- two-qubit gates can be performed using AC signals to modulate a tunable transmons frequency via magnetic flux through its SQUID loop. However, frequency tunablity introduces an additional dephasing mechanism from magnetic fluctuations. In this work, we experimentally study the contribution of instrumentation noise to flux instability and the resulting error rate of parametrically activated two-qubit gates. Specifically, we measure the qubit coherence time under flux modulation while injecting broadband noise through the flux control channel. We model the noises effect using a dephasing rate model that matches well to the measured rates, and use it to prescribe a noise floor required to achieve a desired two-qubit gate infidelity. Finally, we demonstrate that low-pass filtering the AC signal used to drive two-qubit gates between the first and second harmonic frequencies can reduce qubit sensitivity to flux noise at the AC sweet spot (ACSS), confirming an earlier theoretical prediction. The framework we present to determine instrumentation noise floors required for high entangling two-qubit gate fidelity should be extensible to other quantum information processing systems.