Do you want to publish a course? Click here

Reconciling different formulations of viscous water waves and their mass conservation

85   0   0.0 ( 0 )
 Added by Debbie Eeltink
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The viscosity of water induces a vorticity near the free surface boundary. The resulting rotational component of the fluid velocity vector greatly complicates the water wave system. Several approaches to close this system have been proposed. Our analysis compares three common sets of model equations. The first set has a rotational kinematic boundary condition at the surface. In the second set, a gauge choice for the velocity vector is made that cancels the rotational contribution in the kinematic boundary condition, at the cost of rotational velocity in the bulk and a rotational pressure. The third set circumvents the problem by introducing two domains: the irrotational bulk and the vortical boundary layer. This comparison puts forward the link between rotational pressure on the surface and vorticity in the boundary layer, addresses the existence of nonlinear vorticity terms, and shows where approximations have been used in the models. Furthermore, we examine the conservation of mass for the three systems, and how this can be compared to the irrotational case.



rate research

Read More

We study statistical properties after a sudden episode of wind for water waves propagating in one direction. A wave with random initial conditions is propagated using a forced-damped higher order Nonlinear Schrodinger equation (NLS). During the wind episode, the wave action increases, the spectrum broadens, the spectral mean shifts up and the Benjamin-Feir index (BFI) and the kurtosis increase. Conversely, after the wind episode, the opposite occurs for each quantity. The kurtosis of the wave height distribution is considered the main parameter that can indicate whether rogue waves are likely to occur in a sea state, and the BFI is often mentioned as a means to predict the kurtosis. However, we find that while there is indeed a quadratic relation between these two, this relationship is dependent on the details of the forcing and damping. Instead, a simple and robust quadratic relation does exist between the kurtosis and the bandwidth. This could allow for a single-spectrum assessment of the likelihood of rogue waves in a given sea state. In addition, as the kurtosis depends strongly on the damping and forcing coefficients, by combining the bandwidth measurement with the damping coefficient, the evolution of the kurtosis after the wind episode can be predicted.
We present an extensive numerical comparison of a family of balance models appropriate to the semi-geostrophic limit of the rotating shallow water equations, and derived by variational asymptotics in Oliver (2006) for small Rossby numbers ${mathrm{Ro}}$. This family of generalized large-scale semi-geostrophic (GLSG) models contains the $L_1$-model introduced by Salmon (1983) as a special case. We use these models to produce balanced initial states for the full shallow water equations. We then numerically investigate how well these models capture the dynamics of an initially balanced shallow water flow. It is shown that, whereas the $L_1$-member of the GLSG family is able to reproduce the balanced dynamics of the full shallow water equations on time scales of ${mathcal{O}}(1/{mathrm{Ro}})$ very well, all other members develop significant unphysical high wavenumber contributions in the ageostrophic vorticity which spoil the dynamics.
We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples, and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.
Here, through a systematic methodology and the use of high performance computing, we calculate the optimum shape for a wave energy converter under the action of incident waves of (i) monochromatic unidirectional, (ii) monochromatic directional, (iii) polychromatic unidirectional and (iv) polychromatic directional (with both directional symmetry and asymmetry). As a benchmark for our study, without loss of generality, we consider a submerged planar pressure differential wave energy converter, and use Genetic Algorithm to search through a wide range of shapes. A new parametric description of absorber shape based on Fourier decomposition of geometrical shapes is introduced, and for each shape hydrodynamic coefficients are calculated, optimum power take-o? parameters are obtained, and overall efficiency is determined. We show that an optimum geometry of the absorber plate can absorb a significantly higher energy (in some cases a few times higher) when compared to a circular shape of the same area. Specifically, for a unidirectional incident wave, the optimum shape, as expected, is obtained to be the most elongated shape. For directional incident waves, a butterfly-shape is the optimum geometry whose details depend on not only the amplitude and direction of incident wave components, but also the relative phases of those components. For the latter effect, we find an optimally averaged profile through a statistical analysis. Keywords: Wave energy conversion, Shape optimization
We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects: inertia, Coriolis force, small-scale turbulence and variable seawater density, and bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا