Do you want to publish a course? Click here

Factorization and Normalization, Essentially

68   0   0.0 ( 0 )
 Added by Claudia Faggian
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Lambda-calculi come with no fixed evaluation strategy. Different strategies may then be considered, and it is important that they satisfy some abstract rewriting property, such as factorization or normalization theorems. In this paper we provide simple proof techniques for these theorems. Our starting point is a revisitation of Takahashis technique to prove factorization for head reduction. Our technique is both simpler and more powerful, as it works in cases where Takahishis does not. We then pair factorization with two other abstract properties, defining emph{essential systems}, and show that normalization follows. Concretely, we apply the technique to four case studies, two classic ones, head and the leftmost-outermost reductions, and two less classic ones, non-deterministic weak call-by-value and least-level reductions.



rate research

Read More

Factorization -- a simple form of standardization -- is concerned with reduction strategies, i.e. how a result is computed. We present a new technique for proving factorization theorems for compound rewriting systems in a modular way, which is inspired by the Hindley-Rosen technique for confluence. Specifically, our technique is well adapted to deal with extensions of the call-by-name and call-by-value lambda-calculi. The technique is first developed abstractly. We isolate a sufficient condition (called linear swap) for lifting factorization from components to the compound system, and which is compatible with beta-reduction. We then closely analyze some common factorization schemas for the lambda-calculus. Concretely, we apply our technique to diverse extensions of the lambda-calculus, among which de Liguoro and Pipernos non-deterministic lambda-calculus and -- for call-by-value -- Carraro and Guerrieris shuffling calculus. For both calculi the literature contains factorization theorems. In both cases, we give a new proof which is neat, simpler than the original, and strikingly shorter.
We study the reduction in a lambda-calculus derived from Moggis computational one, that we call the computational core. The reduction relation consists of rules obtained by orienting three monadic laws. Such laws, in particular associativity and identity, introduce intricacies in the operational analysis. We investigate the central notions of returning a value versus having a normal form, and address the question of normalizing strategies. Our analysis relies on factorization results.
This paper explores two topics at once: the use of denotational semantics to bound the evaluation length of functional programs, and the semantics of strong (that is, possibly under abstractions) call-by-value evaluation. About the first, we analyze de Carvalhos seminal use of relational semantics for bounding the evaluation length of lambda-terms, starting from the presentation of the semantics as an intersection types system. We focus on the part of his work which is usually neglected in its many recent adaptations, despite being probably the conceptually deeper one: how to transfer the bounding power from the type system to the relational semantics itself. We dissect this result and re-understand it via the isolation of a simpler size representation property. About the second, we use relational semantics to develop a semantical study of strong call-by-value evaluation, which is both a delicate and neglected topic. We give a semantic characterization of terms normalizable with respect to strong evaluation, providing in particular the first result of adequacy with respect to strong call-by-value. Moreover, we extract bounds about strong evaluation from both the type systems and the relational semantics. Essentially, we use strong call-by-value to revisit de Carvalhos semantic bounds, and de Carvalhos technique to provide semantical foundations for strong call-by-value.
Non-idempotent intersection types are used in order to give a bound of the length of the normalization beta-reduction sequence of a lambda term: namely, the bound is expressed as a function of the size of the term.
The connection between normalization by evaluation, logical predicates and semantic gluing constructions is a matter of folklore, worked out in varying degrees within the literature. In this note, we present an elementary version of the gluing technique which corresponds closely with both semantic normalization proofs and the syntactic normalization by evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا